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ABSTRACT: In this paper we discuss a set of conceptual issues regarding the synthesis of
semiotic processes within artificial systems, and its technological offspring, the semionic
networks. We start by putting in context what is this thing - semiotic synthesis, and how and
why it differs from semiotic analysis. We follow proposing the concept of a "semion", as
both an elementary entity with semiotic processing abilities, and a container of knowledge,
explaining its structure and dynamics. At the end, we address the interaction of semions
within semionic networks, and its use with the purpose of building different architectures for
artificial minds.

1 Introduction
The human mind fascinated many generations of philosophers, mathematicians and

scientists during centuries. A whole branch of philosophy was dedicated to this main theme -
the philosophy of mind - on which great philosophers, like Aristotle, Plato, Locke and Kant
have contributed with many different theories trying to explain the mechanisms supporting
the behavior of the human mind. Partially drinking from these sources, a totally independent
area of study was born during the 19th century - Semiotics - the study of signs - the study of
the processes of signification and representation both in man and in nature (NOTH 1995).
There is an obvious connection between semiotics and the philosophy of mind, in the sense
that the use of signs are the basis for the processes of cognition and communication, which
are among the main thought processes occurring in the mind. To be precise, the study of sign
processes is documented in literature since the works of Plato and Aristotle (NOTH 1998), but
Semiotics, as an independent area of research was organized and structured only with the
work of Charles S. Peirce, an american philosopher, during the middle of the 19th century
(PEIRCE 1960). Many others have contributed since then to the development of semiotics, like
Saussure, Hjelmslev, Jakobson, Greimas and Morris - more recently Eco, Sebeok, Merrell
and others (NOTH 1996; MORRIS 1947; MORRIS 1964; MORRIS 1971; SEBEOK 1997).

Until recently, the study of semiotics was restricted to semiotic analysis, i.e., the use
of the theory of semiotics to the analysis of sign processes in different activities of living
beings. With the development of computer sciences - specifically the areas of artificial
intelligence (or as we prefer - intelligent systems), there was open an opportunity of
experimenting the opposite way - that is - the way of synthesis - the way of artificially
creating semiotic processes - semiotic beings. For the first time, we were not mere expectants
of the miracles of nature, but now we were able to fully synthesize devices where semiotic
processes do occur. This was the beginning of "Computational Semiotics" - an
interdisciplinary area of research dedicated to the creation of intelligent systems supported by
the theory of semiotics. In other words - instead of merely analyzing natural devices (where
by natural devices we mean since biological organisms up to human beings) and speculating
about the sign processes happening there, our aim is to fully design these sign processes and
further create instance devices where those sign processes do appear. Those sign processes
will be the texture on which we expect to build thought processes, thoughts and intelligent
behavior.



So, Semiotic Synthesis refers to the attempt of emulating the semiosis cycle within a
digital computer. Among other things, this is done aiming for the construction of autonomous
intelligent systems able to perform intelligent behavior, what includes perception, world
modeling, value judgment and behavior generation. There is an implicit claim here that most
part of intelligent behavior should be due to semiotic processing within autonomous systems,
in the sense that an intelligent system should be comparable to a semiotic system.

Since Computational Semiotics efforts started to appear, the mathematical modeling
of such semiotic systems has being the target for a group of researchers studying the
interactions encountered between semiotics and intelligent systems. The key issue on this
study is the discovery of elementary, or minimum units of intelligence, and their relation to
semiotics. Some attempts have been made aiming for the determination of such elementary
units of intelligence, i.e., a minimum set of operators that would be responsible for building
intelligent behavior within intelligent systems. These attempts include Albus’ outline for a
theory of intelligence (ALBUS 1991) and Meystel’s GFACS algorithm (MEYSTEL 1995). In
our contribution to the Computational Semiotics field, we try to depict the basic elements
composing an intelligent system, in terms of its semiotic understanding. We do this by
proposing the concept of a "semion", or a basic conceptual entity able to carry on semiotic
processing, and at the same time able to store knowledge. We derive a whole taxonomy of
semions, each one adequate to represent a different kind of knowledge. Semions from
different types and behaviors, are mathematically described, and used as atomic components
for an intelligent system. They are at the same time, containers of information and active
agents on the processing of such information.

Semiotic Synthesis and Semionic Networks are though a correlated pair of a theory
and a practice, both enrolling each other into the target of being a kernel for the design and
construction of artificial minds. They are our contribution in order to foster the computational
semiotics field of research.

We will see that modeling semiotic synthesis is not an easy task. In such an endeavor,
many questions are still to be answered. Some of them very basic questions like: Does the
computer (or, more formally, the Touring machine) have sufficient power to be an instance of
a semiotic process ? We still don’t have definitive answers to this question. Some researchers
claim that living organisms embed in themselves some kinds of characteristics that make
them complex systems, not able to being modeled by means of machines. An example of
such a claim can be found on the work of Rosen (ROSEN, 1985; ROSEN, 1991). This is why
we do not call our systems "semiotic machines" but "semiotic devices". Our basic claim here
is that even though a Turing machine is not enough to build up a semiotic device by itself, we
expect that a Turing machine (a computer), with the right software, if not able to fully
"emulate" a semiotic process, will be able to "simulate" it up to an acceptable level of quality.
But up to this point, this is just a hypothesis which, if proofed wrong, may lead to the creation
of a new kind of device - the semiotic device. If it is the case, this semiotic device will be
superior in power than today’s computer. As a first bet, though, we expect that, using the right
software, we will be able to synthesize the semiotic device using a standard computer.

There are other difficult points to be analyzed. For example, the notion of purposive
action (Aristotle’s final cause), or thirdness (as in Peirce), when embedded into a machine (or
semiotic device). Is it possible ? Can a machine have a purpose by itself ? A purpose that it
uses to guide its actions ? Or it only works as a sequence of mechanical behaviors ? These
questions connect directly to the notion of autopoiesis (MATURANA & VARELA 1980). Is it
possible to create an artificial system that performs autopoiesis ?

We still don’t have final answers to those questions. But while those answers do not
appear, other developments are appearing, making computational semiotics alive and, we
hope, paving the way to the construction of a new generation of intelligent systems.



2 Semiotic Synthesis : The Basic Foundations
In this session, we set up the basic foundations in order to describe what is this thing -

semiotic synthesis. Our goal is just to build up a generic scenario, in which semiotic synthesis
is going to be discussed. We do this, in the hope to get clues on how semiotic processes really
happen in a natural interpreter. This is absolutely necessary if we want to implement artificial
systems performing semiotic behavior. Our framework will need to allow the implementation
of a computational version of semiotic processes.

The terminology we are going to use is very much related to standard semiotic
terminology, basically Peircean semiotics terminology, but also including elements from non-
Peircean semiotics. So, we are going to talk about signs, objects and interpretants, but also
interpreters, signals and other terms that, besides sometimes used by Peirce, are not exactly
used in its Peircean meaning (NOTH 1995). We would also be making extrapolations in order
to include other terms, like icons, indexes, symbols, tones, tokens, types, rheme, dicent,
arguments, firstness, secondness, thirdness, etc (PEIRCE 1960). Sometimes, though, we will
have to sacrifice the original generality of those terms. So, the Peircean purists don’t blame us
if I am not using these terms with their original acception, here. Our aim is to set up a
scenario to discuss semiotic synthesis. As a first trial, we will need to let some considerations
aside. We expect to address them in the future, making the necessary correction that would
emerge from the critics of our model. We are trying to create a computational understanding
here of what are signs, objects, interpretants and interpreters. Sometimes, this understanding
is a little bit disappointing. Some people will not agree with our claims. The point is ... we
can not create so generic definitions that would encapsulate mechanisms that we still don’t
know how they work. So, our definitions will appear a little bit limited, and sometimes naive.
But this is only our first exercise, so, ... , we don’t need to be so concerned with this
limitation. Let’s just see if the whole thing make sense to you !

2.1 Interpreters and Representation Spaces
Our framework description starts with the notion of an Interpreter and its

Representation Space. These notions can be illustrated in figure 1.
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Figure 1 - Representation Spaces

The interpreter is our semiotic being - the system that will be holding the sign-
processes. In a pure relational understanding of the semiosis process, if we were followers of



a pure Peircean tradition, maybe the notion of an interpreter is disposable, being surpassed by
the notion of interpretant. But in our case, given that it is exactly what we are interested in
synthesize, it will be absolutely a part of our core concepts. So, the interpreter is our main
object of study and our first concept being introduced.

The interpreter is immersed into an environment, where he is able to get information
by means of sensors, and actuate by means of actuators. The interpreter is also able to actuate
internally to itself, changing its internal states and configuration, if necessary. The external
world surrounding the interpreter takes place in what we call an External Space. The external
space is not equal to the environment, but only the space in which the environment happens.
For now, let’s just forget the real world, and cope only with this notion of external space. The
standard mechanism by which the interpreter gets information from environment is through
its external focus of attention, which selects a region of the external space.

Besides the external space, there is also an internal space, localized within the
interpreter, with his own internal focus of attention too, that is a region of internal space that
is selected for some purpose.

With those two concepts, we have some points to play with. First, like we show in
figure 2, external spaces can be shared by multiple interpreters, but internal spaces are
exclusive to an interpreter in itself. Also, an interpreter is able to control both its internal and
external focus of attention.
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Figure 2 - Shareable and Non-Shareable Spaces

But all of this is meaningless if there is nothing at the representation spaces (internal
and external). In order to make these concepts useful we introduce, then, the notion of signal
field. This notion is derived from field theory, and basically is a function ψ(x,y,z,t) that to
each point in space and time, attach a unique informational value. The notion of a signal field
is currently an abstraction and a model for things that may exist in the real world, in a non-
objective and measurable interpretation of this real world (which says that the world is not
crowded of objects, as preached by objectivist theories, but only that we can collect measures
with sensors - signals - from this same world). The signal field relates to the union of all
possible measurements able to be collected from this real world. For example, if the space
and time hosting the signal field is our real world (or whatever we feel it is - just to avoid



some philosophical debate around it), we may consider the space to be 3-dimensional, and the
value of the signal field to be a state associated to a point (x,y,z), at time t. This state may be
related to an energy function, or a wave function, or any kind of physical model we choose
for describing reality. If, instead using the real world to host the signal field, we choose to use
another abstraction, e.g. the notion of a computer memory, then the space will be the
computer memory, the location will be the address and the value of the signal field will be the
informational bytes stored at each address, for each moment of time. The main point behind
the notion of a signal field is the notion that its value conveys some sort of information,
which will be used in order to build the notion of a sign. Our conception of a sign is build up
on the notion of a signal that by itself is build up over the notion of a signal field.

To each representation space, we assume that there exists a corresponding signal field.
So, we have at least an external signal field and an internal signal field. We do not necessarily
consider that these signal fields are known. Sometimes they are really not known. In most of
the times they are partially known. But we only consider that these signal fields do really
exist. These notions are illustrated in figure 3.
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Figure 3 - Signal Fields

Now, for the sake of trying to configure a semiotic model, let us consider some
specific types of representation spaces and signal fields. First, we will consider the real world
(i.e. whatever really exists at the physical space) to be an external signal field. For our
purposes, we may assume that the external space is the 3 dimensional space we humans have
the capacity to perceive. There are physical theories that try to detect more dimensions
(KAKU 1994), but we will stay with the three we usually perceive, plus time. One important
difference here is that we are not modeling our world as a world filled of things like in the
objectivist tradition. For us, the real world is a giant and continuous wave function embracing
all the 3-dimensional space. The signal field that models the world, though, is not just any
function, but a function with a set of certain kind of particularities. These particularities are
those that gives us the illusion that the world is constituted of things. There seems to be some
rules on how points with lower energy (points where there is only emptiness) and points with
higher energy (points where we detect the presence of things - being it solid, liquid or gas)
and how those regions can move in time. It is obvious from this definition, that the external
signal field is unknowable in its entirety. Interpreters are only able to know part of the



external signal field, where, at each time, its focus of attention is set up.
The internal space will accommodate a model of external signal field, by means of an

internal signal field. Ideally, there should be multiple internal spaces (and signal fields), not
just one (figure 4).

 

CONCRETE
SPACE

ABSTRACT
SPACE

ABSTRACT
SPACE

Figure 4 - Multiple Internal Spaces and Signal fields

There should be one internal space that should hold in its signal field our best model
of the external signal field. This will be called the concrete space, and will be an image of our
Umwelt (SEBEOK 1997) or, in other words, our sensible environment. The other spaces will
be called generically abstract spaces. They will be used to store abstract concepts necessary
in order to reconstitute the concrete signal field.

In a general way, both internal spaces and internal signal fields will depend on the
type of semiotic synthesis we are trying to model.

There are some important things we should always remember regarding those issues.
First, the external signal field is infinite, continuous and probably takes values on

continuous sets. So, they can not be known as a whole. But, it can be known in parts, with
approximations.

Second, the only way we are able to know the external signal field is due to sensors.
Our sensors are established by our focus of attention. To put our focus of attention on some
region of external space is equivalent to locate our sensors on this region.

We will call the signal field related to the region under the focus of attention (internal
or external) generically as a "signal". So, a signal is by definition a multi-dimensional value,
possibly structured in space and time.

Having that in mind, we are ready for the definitions to come.

3 Modeling Semiosis
Given the backward conceptual framework, we are now prepared to build up our



model of semiosis, or sign process that - we know - is not a complete one, but is specially
interesting for the purposes we are concerned with. We will start with a triadic interpretation
of the sign that is, in some sense, similar to Morris’ one, but we hope, will evolve to a more
Peircean like in the future. Our aim is to reach a Peircean definition, that we conclude to be
more complete. In this sense, our definition of semiosis will require the definition of three
main partners - sign, object and interpretant, which play a relational (and with some of them
this relation is a causal relation) role where signs causally generate new signs and so over. So,
there come our limited definitions for signs, objects and interpretants.

A sign (in the sense of the interpreter) is understood as everything under the
interpreter’s focus of attention (internal OR external) that would cause an interpreter action.
In other words, a sign is a signal in either the internal or external representation space, able to
cause an interpreter action. The possible interpreter actions are the change in the focuses of
attention (internal and/or external) and/or the determination, for the next future time tnew =
tcurrent+1 (or tnew = tcurrent + ε, ε → 0, if considering a continuous timeframe), of a new value
for any signal field (internal or external), at a point (x,y,z) covered by the focus of attention in
that space.

The object, just like the sign, is a signal existing at the external or internal spaces, but
not currently under the interpreter’s focus of attention that, if under an interpreter’s focus of
attention, would cause the exactly same interpreter action actually generated by the presence
of the sign. In this sense, we may say that the sign refers to the object, in the sense that it
causes within the interpreter, the exactly same reaction that would be caused due to the
presence of the object.

The interpretant (in the sense of the interpreter) of this sign will be:

• any interpreter action caused due to the presence of the sign under the focus of
attention, AND/OR

• any change in internal and external signal fields for a future time-step
tnew = tcurrent+1, caused by an interpreter action due to the effect of the sign.

These notions may be compared (but loosely compared) to the Peircean notions of
energetic and logic interpretant (PEIRCE 1960), despite this comparison is not exact neither
fair.

With these notions in hand, we are ready to define what would be an external
semiosis. We call an external semiosis to the generation of an interpretant, due to the
presence of a sign, where this interpretant happens at the external space. In other words, the
effect of the sign is made to happen on the external space. Either by changing the external
focus of attention or by changing the values (for the next time-step t+1) of external signal
fields at some point (x,y,z) within the external focus of attention.

A change in external signal field corresponds to a change in environment. This change
would be of course shareable with other interpreters that are focusing attention in the same
region of external space. This change can act as a sign for the same interpreter or to other
interpreters, generating a chain of interpretations.

External semiosis happens mainly on interpreters that do not have an internal space.
Examples of such kinds of semiosis would be e.g. on molecules and chemical reactions. The
presence of a given molecule will affect other molecule, making them to enter a reaction that
is a kind of mutual semiosis. This type of semiosis happens too on very simple biological
organisms that have a purely reactive behavior, didn’t storing any kind of information in an
internal memory.

A special case of external semiosis happens when the sign is not at the external space
too, but it is in some of the internal spaces. Usually, this is a final result of a chain of internal



semiosis, resulting in an external behavior.
We call an internal semiosis, a process in which the interpretant of a sign happens

within any of the internal spaces of the interpreter. If the sign is at the external space, then
we call this process a semiotic transduction, because an external sign cause an internal
interpretant. The process in which an internal sign causes an external interpretant (which is an
external semiosis) can also be called a semiotic transduction, because the cause and effect are
in different spaces.

In this sense, a typical semiosis chain starts with an external sign, which generates a
set of internal interpretants. Those internal interpretants become then internal signs,
generating new internal interpretants. This cycle continues, until some internal interpretant
become an internal sign that generates an external interpretant, resulting in a change on the
environment.

4 The Role of  Information within Signals and Signs
From the notions given in last session, we need to point out some important relations

and differences regarding the role of information in signs and signals. This role of
information is fundamental for us to clearly make distinctions regarding signals and signs.
The signal is a support for the sign, but it is just a part of it. For a signal to become a sign, it
must be able to generate another signal, which will be the interpretant of it. More than this,
this signal must generate the same exact reaction that a second signal - its object - would
generate in that interpreter. So, there is a clear connection between the notion of a signal and
the notion of data, in terms of data processing. The signal, by itself is just a vehicle for
conveying information, nothing else. As soon as this information is used to change a signal
field, this signal turns into a sign, and starts its meaningful activity. Some semioticians do not
like this vision, and prefer to say that the elementary entity is the sign, and that the signal is
just a kind of degenerate kind of sign. We prefer to define a signal as an elementary entity
and build up the notion of sign over it. Engineers and computer scientists are already used to
the notion of signal (in terms of signal processing, control, etc…), and to grow the notion of
sign using the notion of signal may be easier to understand, regarding this community of
engineers and computer scientists. The information conveyed by signs (signals that do
perform actions) are associated to the actions they are able to cause. When that happens
(signals becoming signs), then the information is called knowledge.

We make then a strong correlation relating to the role of information that is conveyed.
Signals convey just data, and signs convey knowledge.

5 Knowledge Units
Now, if we want to turn this model of semiosis into a functional (computational)

model, we need to make some simplifications of it. The first simplification will be to turn
from this generic, potentially continuous model into a discrete one. From our definition of a
sign, we see that it can be related to continuous signals happening at the environment.
Despite this is a very abstract vision of what is a sign, for computational purposes, we will
need a more convenient way of dealing with those signs. We will call a discrete sign (that is,
the region under a focus of attention of some discrete space, that is a sign or a set of signals,
depending if causing or not a behavior at the interpreter) a knowledge unit, because even
though it is not used like that, it is able to be used as knowledge.

The basic behavior of a computational interpreter is then to select knowledge units
both from the external and internal spaces, generating new knowledge units at the external or
internal spaces. Knowledge units and interpreters will be viewed as the elementary pieces of
sign processes within a computational semiotics device. Let's see how they integrate each
other in order to build what we mean by a semiotic device. Observe that the process hereon is



built on the notions of semiotic synthesis given in section 2.
First of all, we consider the existence of an environment, or real world, which is

defined as a set of dynamic continuous phenomena running in parallel (it’s our external signal
field). We assume we are not able to know this environment in its whole. The part of
environment we are able to know, in a process that goes through our sensors, is called our
Umwelt (SEBEOK 1997). The Umwelt, also called our sensible environment, is our best
possible comprehension of reality. It is very important to stress, though, that Umwelt is not
reality. It comprises only our best understanding of reality. In this sense, our sensors are the
primary source of information that flows into our mind. These sensors do provide a
continuous and partial information about phenomena occurring in Umwelt. From this
continuous source of information, we extract what we call singularities (in the sense of
(MEYSTEL 1996)), i.e., clusters of information that can be aggregated under a single concept.
These singularities are discrete entities that model, in a specific level of resolution, the
phenomena occurring in the world. We can also view these singularities as an intensional
definition for what we are calling here knowledge units (figure 5).
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Figure 5- Singularities Extraction

Once those granules of information (singularities) are identified in the Umwelt, they
need to be encoded to become a knowledge unit. This codification needs a representation
space and an embodiment vehicle (structure) that is placed within the representation space.
These structures may be abstracted to mathematical structures (figure 6), i.e., (a) numbers, (b)
lists, (c) trees and (d) graphs.
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Figure 6 – Mathematical Structures

Each structure has a place at the representation space (figure 7).
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Figure 7 – Representation Space

The view shown in figure 7 is though, our view of representation space after an
interpretation. Before interpretation, the representation space is more like in figure 8: a set of
values occupying a place in space. To build a knowledge unit, then, we need what we called
the "focus of attention" mechanism, which selects a closed region of representation space,
that is our primary field of interpretation.
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Figure 8 – Focus of Attention and Structures Identification

Then comes what we call the first interpretation problem, (illustrated in figure 9).
How a set of values embraced by the focus of attention is going to be interpreted ? This is
called the structural identification problem.
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Figure 9 – Interpretation Problem

A second interpretation problem, that comes once we identified the structure within
our focus of attention, is related with the semantic identification of information within the
structure. If the data represented by the structure respects to a direct modeling of an
environment phenomenon, this knowledge unit is called an icon. If it gives the localization
within the representation space of another structure, it is called an index. And, if it is a key in
a conversion table, it is a symbol. In this case, we will need to use a conversion table (that
should be another structure in the representation space), in order to locate the icon
representing the phenomenon we want to refer to.

Elementary knowledge units (usually icons) are formed due to these singularity
extraction mechanisms. More elaborate knowledge units, though, are formed by the
application of knowledge processing operators, illustrated in figure 10.

KNOWLEDGE
UNITS

KNOWLEDGE
EXTRACTION
(DEDUCTION)

KNOWLEDGE
GENERATION
(ABDUCTION)

KNOWLEDGE
EVALUATION
(INDUCTION)

Figure 10 – Knowledge Processing Operators

These knowledge processing operators are from 3 basic types, that we are going to
call here generalized deduction, generalized induction and generalized abduction. We are
going to address them in the following sections.

6 A Taxonomy for Knowledge Units
We know from our daily life that our understanding of phenomena surrounding our

environment is built within different categories of concepts, which are mirrored on the
different notions we aggregate to words in a natural language. So, we know that the ideas
brought by a substantive are categorically different from the ideas brought by an adjective,



which are different from the ideas brought by a verb, and the same with adverbs,
prepositions, articles, etc. They are not just different, as say, an elephant is different from an
ant, but they are categorically different. We cannot compare, let’s say, the understanding of
what is "blue", with what is "ball", with what is "move". The many facets of understanding
were depicted by Locke, in his seminal philosophical work -"An Essay Concerning Human
Understanding" from 1689 (see a reprint of this work in (LOCKE 1997)), where he
distinguishes simple ideas from complex ideas from knowledge.

Following this same intuitive understanding, we classified knowledge units according
to a taxonomy of categories of knowledge (GUDWIN 1996; GUDWIN & GOMIDE 1997A;
GUDWIN & GOMIDE 1997B; GUDWIN & GOMIDE 1997C). This taxonomy is inspired on the
classification of different types of signs, given by Peirce (PEIRCE 1960), and the different
dimensions for an interpretant, by Morris (MORRIS 1947; MORRIS 1964; MORRIS 1971).
Peirce’s semiotics introduced a signical taxonomy, where different kinds of signs (e.g.
rhemes, dicents, arguments, icons, indexes, symbols, qualisigns, sinsigns, legisigns) were
proposed, addressing different characteristics of its structure and signic function. Morris
identified 3 possible dimensions for an interpretant (designative, appraisive and prescriptive).
The ideas from Peirce and Morris were unified in order to generate this taxonomy for
knowledge units.

Basically, each type of knowledge is associated with a different category of concept
(or idea), i.e., the semantic that is intrinsic to a given knowledge type. One first distinction we
made was the distinction between what we mean by passive (or static) knowledge and active
(or dynamic) knowledge. A passive piece of knowledge is simply a container of organized
information, which needs to be manipulated by interpreters in order to generate other pieces
of knowledge, generating a kind of thought flow. Active pieces of knowledge, on the other
hand, at the same time that can contain organized information, may be used by interpreters in
order to generate full actions of manipulation of other pieces of knowledge. So, when
attached to interpreters (or micro-interpreters - very rudimentary and simple interpreters, as
we will propose soon), these active pieces of knowledge may work as engines for the creation
of newer pieces of knowledge. We divide passive pieces of knowledge into two categories of
knowledge units, rhematic and dicent, and the active knowledge units comprises a category
of knowledge we call argumentative knowledge. The types referred as rhematic and dicent
(GUDWIN 1996; GUDWIN & GOMIDE 1997A; GUDWIN & GOMIDE 1997B; GUDWIN & GOMIDE

1997C) are passive, in the sense that they only exist as data. The knowledge types known as
arguments are active, in the sense that they do not only exist as data but, if used by an
interpreter, they may also perform transformations in the system. A direct analogy that allows
us to better understand the difference between passive and active types is the classification of
information within a computer memory as data and code. Passive types are just like data in a
computer memory. Active types are like code in a computer memory. They can be seen as
data or code, depending on the context being analyzed. Active knowledge units are the
primary source of activity in a semiotic system. They are responsible for the extraction of
singularities and also for the further discovery and manipulation of new knowledge units
within the semiotic system.

Originally, two taxonomies were developed. The first one, concerning the nature of
knowledge, and the second one, concerning its pragmatical use in the construction of an
intelligent system. They are presented in figures 11 and 12 below.
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These taxonomies were further unified and summarized, as in figure 13. In this figure,
we adopt the following convention:

R means Rhematic;
D means Dicent;
Ic means iconic;
Ob means object;
Sp means specific;
G means generic;
Sy means symbolic;
In means indexical;
Se means sensorial;
Oc means occurrence.

In figure 13, all arrows between categories refer to argumentative knowledge (both
analytic and synthetic). The notation between brackets is used to specify the different kinds
of knowledge. For example, {RIcSeG} means a rhematic iconic sensorial generic piece of
knowledge. Figure 13, besides representing the categories by themselves, also shows the
conceived types of transformation of knowledge units, in order to better compact information.
In this sense, sensors will generate {RIcSeSp} knowledge units that will be further converted
to {RIcSeG} knowledge units, in order to save memory space. They will be used further to
generate {RIcObSp} or {RIcObG} knowledge units, and so over.
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In this summary view, a passive knowledge unit is both classified according to its
functionality (designative, appraisive, prescriptive) and to its structure (rhematic, dicent).
Argumentative knowledge units are a special case, given its active characteristic, being
classified both as functional and structural.

6.1 Rhematic Knowledge Units
Rhematic ({R}) knowledge units refer to ideas that can be assigned to isolated words

in a natural language. They concern what we call the semantic memory of an intelligent
system. Usually, they are used in the representation of environmental phenomena like
sensorial experiences, objects and events. Sensorial experiences can be assigned as the
semantics of e.g. adjectives, the existence of physical or logical objects may relate to
substantives and occurrences and events may be assigned as the semantics of verbs. In a last
analysis, though, all of them should evolve from perceptual data. Rhematic Knowledge Units
may be still divided into icons (Rhematic Iconic - {RIc}), symbols (or names) (Rhematic
Symbolic - {RSy}), or indexes (Rhematic Indexical - {RIn}). A {RIc} knowledge unit refers
to a direct model for the phenomenon it represents. A {RSy} knowledge unit is a name that
refers the phenomenon. A {RIn} knowledge unit is an indirect reference to the phenomenon.

The {RIc} knowledge unit may still be divided into three different classes:

Sensorial - {RIcSe}, usually models of adjectives;
Object - {RIcOb}, usually models of substantives;
Occurrence - {RIcOc}, usually models of verbs.

Those three categories of knowledge units can all be still divided into two classes:
specific (Sp) and generic (G). For example, a {RIcSe} knowledge unit refers to a sensorial
information like an image or a temperature sensor measuring. A {RIcSeSp} knowledge unit
refers to a particular instance of a sensorial pattern, e.g. a specific image, or the temperature
in a given time. A {RIcSeG} knowledge unit refers to a generic knowledge of all time
occurrences of some sensorial input. An example of a {RIcSeSp} would be a measuring from
a temperature sensor, which assigns to a specific region of space and time a temperature of 28
degrees Celsius. An example of a {RIcSeG} knowledge unit will be a fuzzy set comprising
all the temperatures that may be considered as a high temperature.



The {RIcOb} knowledge units are used to represent real world objects (which may or
may not exist in such a real world). As before, a {RIcObSp} knowledge unit refers to a
specific object in time and space. This object may be an instance of a class of objects, which
may be represented then by a {RIcObG} knowledge unit.

The {RIcOc} knowledge units are representations for the semantic of verbs. Usually,
they set-up attribute values to an object, or represent changes in one or more attribute values
in one or many objects through time. Examples of {RIcOc} comprise the assignment of state
properties to an object e.g. the assignment of a given temperature to an attribute called
temperature, etc. They may refer also to the creation or destruction of an object, and so on.
The {RIcOcSp} knowledge units are related to specific occurrences in time and space, e.g.
representing the changing of traffic light, in a given time, from red to green. The {RIcOcG}
knowledge units represent generic occurrence, e.g., the changing of a traffic light from red to
green, without specifying a particular instance of time.

6.2 Dicent Knowledge Units
The dicent ({D}) knowledge units are representations for the meaning of phrases in a

given language. They may be propositions, but also commands or questions. They are used to
compose what we call an episodic memory within an intelligent system. The most studied
kind of dicent knowledge is the proposition, usually studied within the context of predicate
logic calculus. The difference between a proposition and a term is fundamentally that the
proposition has a truth-value associated with it. Usually, this truth-value represents the belief
the intelligent system have on the proposition and it may vary from false to true using a
multivalued logic or not (e.g. fuzzy logic). Compared to a rhematic knowledge unit, we may
say that if a rhematic knowledge unit represents the meaning of a single word in a natural
language, dicent knowledge units do represent the semantic of a combination of words
forming expressions and phrases in such a natural language, and referring to a situation
happening in a real or logic world.

We represent a dicent knowledge unit by associating a term (usually an expression of
{R} knowledge units) to a truth-value. Dicent knowledge units may also be formed by the
association of other dicent knowledge units, linked by logical connectives. For examples:

the knowledge that "A" is true;
the knowledge that "A ∧ B" is false;
the knowledge that "IF A ∧ B THEN C" is true.

Dicent knowledge units may be iconic ({DIc}) or symbolic ({DSy}). The {DSy}
knowledge units use a {RSy} knowledge unit to refer to the meaning of a whole phrase, to
which we also attach a truth-value. An example of such knowledge unit would be, e.g., a
label for a first order logic sentence. The {DIc} knowledge units are explicit compositions of
{RIc} knowledge units, plus a measure of the belief that this composition really describes
something happening on the real world.

6.3 Designative Knowledge Units
Designative knowledge units are used to model the world in which the intelligent

system is immersed. For this purpose they may be Rhematic and/r Dicent knowledge units,
either specific or generic. Designative knowledge units may also be viewed as descriptions of
facts or things on the real world. An intelligent system initially has just a few, or eventually
no designative knowledge units "a priori". Usually designative knowledge units emerge from
the interaction between the system and world.



6.4 Appraisive Knowledge Units
Appraisive knowledge units are used to represent an evaluation (a judgment, a

criteria) regarding the possible success in achieving goals. In natural systems, appraisive
knowledge units may be related to the essential goals of a being, like reproduction, survival
of the individual, survival of the specie and increasing the system’s knowledge about the
world, for example. Depending on the goal they are related to, appraisive knowledge units
may assume special forms like: desire, repulse, fear, anger, hate, love, pleasure, pain,
comfort, discomfort, etc. Essentially, appraisive knowledge units evaluate if a given
sensation, object, or occurrence is good or not, as far as goal achievement is concerned. An
appraisive knowledge unit is usually also a {RIc} knowledge unit.

Appraisive knowledge units are used to build what we call the "Value System" of an
intelligent system, being related to the notion of an "emotion", as observed in living beings.
So, we may say we use appraisive knowledge units to model "emotions" within intelligent
systems, and our claim here is that this intelligent system not only is able to simulate
emotions, but that they actually really are able to feel those emotions, making a kind of
emulation of such an emotion. This is a very polemic claim, which we already discussed in
(GONÇALVES & GUDWIN 1999), but we have confidence that this claim can be justified,
depending on the semantic we attribute to the word "emotion".

6.5 Prescriptive Knowledge Units
Prescriptive knowledge units are used in order to let an intelligent system act on the

real world. Basically, prescriptive knowledge units are used to establish and to implement
plans through actuators. However, prescriptive knowledge units will not necessarily end up
into an action, but remain just a plan of action. Many prescriptive knowledge units may be
used to perform a prediction or a plan, but only one of them will be selected to generate an
action.

Strictly speaking, prescriptive knowledge units are commands, used to plan, predict
and actuate in the real world through actuators. Just like appraisive knowledge units,
prescriptive knowledge units are usually classified as rhematic iconic.

6.6 Argumentative Knowledge Units
Argumentative knowledge units are used to perform the processing and

transformation of other knowledge units, by means of some algorithm, specially tailored to
the particular categories of knowledge units they are able to process. In this sense, the
information encoded in its structure, besides carrying some data content, is also used by an
interpreter in order to promote transformation actions on itself and in other knowledge units.
So, its data carries also a sort of program code beyond its data ability. We say that knowledge
units of this kind are functional because they have an explicit functional role. A good
metaphor for understanding the dual nature of argumentative knowledge units is to look to
machine instructions within a computer memory. Those instructions can be seen both as data
(a sequence of bytes) and code (processor instructions). In the same way, argumentative
knowledge units are both data (structure) and code (instructions on how to process). The
argumentative knowledge units ({Ar}) can be synthetic ({ArSt}) or analytic ({ArAn}). These
qualifications refer to an ability of knowledge units of, depending on their type, storing many
other knowledge units (potentially infinite), within single knowledge units of a higher level
type. An analytic knowledge unit is able to extract from a higher level knowledge unit, one or
more of its components, stored in a reduced form in the higher level knowledge unit. The
synthetic knowledge units are able to create those higher-level knowledge units, based on
lower level ones. They are able, also, to modify in some sense a given higher level
knowledge unit, in order to let it adapt to new knowledge units inputs. In other words, they



are able to synthesize new knowledge units. There are two kinds of {ArSt} knowledge units:
inductive knowledge units ({ArStId}) and abductive knowledge units ({ArStAb}). The
{ArStId} knowledge units perform modifications into parameters of their input knowledge
units, making adaptations of them. The most useful example of an {ArStId} knowledge unit
is the generalization operator, which assigns new truth-values (or belief measures), based on
the evidence of input knowledge units, to a higher-level knowledge unit which encodes a
belief measure inside it. Other examples of inductive arguments are the learning rules used
within neural networks. Supposing that we have {RIcObSp} knowledge units corresponding
to neurons, the encoding of a learning rule that modify these {RIcObSp} knowledge units,
changing their internal parameters are an example of an {ArStId} knowledge unit. The
{ArStAb} or abductive knowledge units are responsible for the creation and generation of
totally newer knowledge units, usually based on fragments of other knowledge units, but
always with some random insertion. Examples of {ArStAb} or abductive knowledge units are
the mutation and crossover operators used within genetic algorithms. Supposing that two
chromossomes are encoded into two {RIcObSp} knowledge units, an {ArStAb} is able to
generate a new pair of {RIcObSp} knowledge units, generated by means of a crossover of the
previous two.

7 Knowledge Units Manipulation
Active knowledge units, as pointed above, are special types classified into the

knowledge hierarchy within a particular branch, involving the family of argumentative
knowledge units. Opposed to passive knowledge units, they carry the property of being able,
when used by an interpreter, to process other knowledge units. Basically, an argumentative
knowledge unit is a piece of knowledge whose semantic is the understanding of knowledge
manipulation. In other words, it indicates how to produce new pieces of knowledge, taking as
input a set of knowledge units.

In this section, we will analyze more deeply the nature of argumentative knowledge
units. Their behavior is based on a set of three basic operators, namely knowledge generation,
knowledge extraction, and knowledge evaluation, which should be understood as
generalizations for the abduction, deduction and induction reasoning methods respectively. In
this sense, knowledge generation is viewed as an abstraction for abduction, knowledge
extraction is an abstraction for deduction and knowledge evaluation is an abstraction for
induction, leading us to universal operators of generalized abduction, deduction and
induction.

Despite this seems to be a clear and concise understanding, we will see that it is not.
The notions of abduction, deduction and induction are not a commonsense in literature.
Peirce himself has developed an elaborated study of Aristotle’s syllogisms in order to grow
up an understanding of what those terms really mean. During his early life, he (as many other
men of science) associated induction with generalization and abduction with hypothesis
making. These were the two main ways of generating new knowledge, as recognized by
science during the time of Peirce. During the early ages of philosophy of mind, deduction
was the main and unique knowledge operator recognized as valid. By the time of Peirce,
another knowledge operator had appeared - induction, viewed as the capacity of making
generalizations. By this time, the concept of thought was reduced to cycles of induction and
deduction, in which induction was responsible for creating concepts and deduction for using
them. Peirce noticed that besides induction (generalization), there was another knowledge
operator - hypothesis making, that was able to create new concepts, but was not related to any
kind of generalization. Peirce then introduced hypothesis making (sometimes referred as
retroduction) as a third possible knowledge operator. But this was just the beginning. Peirce
had many theoretical problems in order to differentiate some strange kinds of induction and



hypothesis making, which were very close in behavior. During most part of his life, Peirce
struggled with this problem, and was able to solve it only on his late life. Fann, in a very
enlightening book studying the chronological writings of Peirce (FANN 1970), showed the
evolution of Peirce’s thoughts regarding abduction, deduction and induction, and how Peirce
could redefine those concepts in a sound framework. And the results were surprising. Peirce
had to break the idea that induction was generalization and also break the process of
hypothesis making in order to reach his current understanding of what is induction and what
is (now) abduction. He realized that both of them (generalization and hypothesis making)
have phases of structural constructions and a further evaluation of results. In the case of
generalization, there was first the construction of a structure representing the generalized
concept, and further an evaluation that gives belief to this construction. In the case of
hypothesis making, there was a first phase in which the hypothesis was constructed (its
structure) and then a second phase in which different hypotheses were evaluated and the best
hypothesis was selected. So, in both cases there is a phase of construction and a phase of
evaluation. Peirce then associated the idea of construction to what he called "abduction" and
the phase of evaluation of what was now the new understanding of the word "induction".
Making this distinction, he could see that both generalization and hypothesis making have
within them elements of abduction and induction. Unfortunately, for people that do not know
Peirce (and for many that know him, but are not aware of this change in meaning for
induction along his chronological writings), induction is still associated to generalization, and
this is the source of very much noise in literature regarding knowledge processing. For our
understanding, we will keep the late Peircean understanding of those terms, and to avoid
misunderstandings, instead of using abduction, deduction and induction, we will refer to
knowledge generation, knowledge extraction and knowledge evaluation.

But, before going on to detail these three knowledge operators, we have to first
discuss the issues of abstraction, and the intensional and extensional modes of representation.

7.1 Abstractions
The Webster dictionary defines abstraction, or abstract idea as an idea that is

disassociated from any specific instance, or an idea that is expressing a quality apart from an
object. Without loosing this understanding, we will define an abstraction as a way of
representing potentially infinite sets of elements, by creating a law of pertinence to the set.
We know that there are two ways of describing a set. We may list all its elements, or we may
create a law and say that any element that respects this law is a member of the set. The first
representation of a set is called an extensional representation of the set. The second
representation of the set is called an intensional representation of the set. If we now take a
finite representation of the law governing set membership, we will have an abstraction of the
set. In other words, an abstraction is an intensional representation of a set, given in the form
of a sign.

Knowledge units from some types of knowledge can be compared to each other by
means of an "abstraction" partial order relation ( ). In this sense, if some knowledge units a
and b are related by a b, then we say that b is an abstraction of a. Or, in other words, that b
is a generalization of a, and a is an specialization of b. These concepts are fundamental for
our definitions of knowledge extraction, knowledge generation and knowledge selection. The
key issue for understanding the abstraction relation is to remember the two possible ways of
defining a set. We may define a set using an extensional definition, where we explicitly list
all elements within the set. This way of definition is fine for finite sets only. There is also the
intensional definition of a set, where we define a set as the collection of all possible points
satisfying a condition. Using an intensional definition, we may represent a whole infinite set
with only a finite number of parameters. This implies in an encoding able to convert from the



intensional representation for elements in the extensional representation. For example, let a
set S be defined as S = {(x,y) ∈ R2 | y = 2x3+7x+1 }. This is an intensional definition for set
S. We may represent set S, as the tuple (2,0,7,1), that encodes all the information necessary to
reconstruct the points (x,y) belonging to S. Suppose now a knowledge unit a = (1,10) and a
knowledge unit b = (2,0,7,1). If we interpret a as being a pair in R2, and b as being the
parameters representing the infinite set S, we may say that a b, because knowledge unit b
comprises not only a, but a whole set of pairs obeying the same relationship. Notice that we
may have also a knowledge unit c = (0,1,1,10,2,31), that should be decoded as the set T =
{(0,1),(1,10),(2,31)}, and we would also have c b, and a c b. This is only a clue for
understanding the nature of abstraction operator. The way in which we decided to encode set
S in tuple (2,0,7,1) is not trivial. We may view this operation as a kind of data compression
operator. Each knowledge unit b that can be expanded to other knowledge units ai through
some particular interpretation is said to be a generalization of them. And the ai’s are said to
be specializations of b.

7.2 The Elementary Knowledge Operators
We propose a minimum set of operators as a conceptual basis for the construction of

intelligent systems. These are the "knowledge extraction" operator, "knowledge generation"
operator and "knowledge selection" operator. In fact, they are not exactly operators, but
classes of operators.

7.2.1 Knowledge Extraction
Suppose a knowledge unit b and a knowledge unit a, such that a b. Then, a function

fke that maps b (remembering that b is a structure, e.g. a structured number) onto a: a = fke(b),
is called a knowledge extraction operator.
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Figure 14 – Knowledge Extraction

In figure 14 we have an example of knowledge extraction. From a set P of knowledge
units, called the "premise", the operator extracts a set C of knowledge units, called the
"conclusion". We call this operation knowledge extraction, because the extensional definition
of the knowledge units in C is a subset of the extensional definition of knowledge units in P.
So, it "extracts" from P only part of its semantic content.



7.2.2 Knowledge Generation
Suppose now the same a and b above, and also a function fkg that maps a onto b, i.e.,b

= fkg(a). Then fkg is called a knowledge generation operator. Usually, this kind of operator is
not single input/single output, but comprises a set of input knowledge units and a
corresponding set of output knowledge units. Then, we have e.g. that (b1,...,bm) =
fkg(a1,a2,...,an).
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Figure 15 – Knowledge Generation

In figure 15, the premise P is the collection of knowledge units ai and the conclusion
C is the collection of knowledge units bi. One of the particularities of this operator is that the
extensional definition of the knowledge units in C necessarily contains elements that are not
originally in the extensional definition of knowledge units in P. They have been added during
the process of knowledge generation. This is what characterizes the knowledge generation
operation. This process can be done in many different ways, including combination of
knowledge units, fusion of knowledge units, transformation  of knowledge units (including
insertion of noise), interpolation, fitting and topologic expansion of knowledge units or
any hybridism of these techniques. A lot of examples may be set here. For example, the
interpolation of functions adds all the points surrounding the original samples. The fitting of
functions neither requires the inclusion of sample points. Topologic expansion from a number
to a fuzzy number, adds all the points in the vicinity of it. The learning algorithm of a neural
network transforms a set of weights describing a nonlinear classifying function into another,
by adjusting it in order to include new sample points.

7.2.3 Knowledge Evaluation
Suppose now, that we have a set of input knowledge units, {a1,a2,...,an}, that must be

judged or evaluated regarding a purpose or objective p. Suppose now a function fke, that
performs the evaluation of the input knowledge units, regarding the purpose p, generating an
appraisive knowledge unit as output, or changing internal parameters of input knowledge
units: b = fke(a1,a2,...,an, p), in the sense that b is either a new knowledge unit with an
appraisive content or any of the ai’s with their parameters modified. Then, fke is called a
knowledge evaluation operator
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Figure 16 – Knowledge Evaluation

In figure 16, the knowledge units ai are within set P (Premise) and b is equivalent to
the conclusion C.

8 Semions
In order to build a computable model of such knowledge unit processing, we derived

a related concept, which aggregates both a knowledge unit and what we call a micro-
interpreter into an elementary component we called a semion. Basically, semions are the
basic entities of semiosis. The idea of a semion is to embed in a same component, both a
knowledge unit and a micro-interpreter. So, a semion is neither just a signal, especially
encoded in order to store different types of knowledge units, nor just a micro-interpreter, able
to transform argumentative knowledge units into inferential behavior. A semion is both
things. Whenever there is no argumentative knowledge to be interpreted, the semion
degenerate simply to a knowledge unit. A model of a semion can be viewed in figure 17.
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Figure 17 - The Model of a Generic Semion

The structural part of a semion (as seen in figure 17) is its descriptive content, a kind
of a genetic string for the semion, which holds the signals referring to the knowledge unit
personality of a semion. This descriptive content can be divided into five sectors, regarding
the use the micro-interpreter personality of the semion is going to make of each sector. It is
divided into three regions which store states (the input, internal and output states) and two
regions that store argumentative functions (the transforming functions and the evaluation
function). Semions can be classified into classes, which depends basically on the structure of
their descriptive contents, and the information that each part of it encodes. A semion also
have a set of input gates that feed an input interface, and a set of output gates, that are fed by
the output interface. Now, to understand the meaning of each of these sections, we need to
make the semion interact with other semions in a semionic system.

The interaction of a semion with other semions, in a semionic system is illustrated in
figure 18. In this figure, we have semions s1, s2 and s3 which will perform the role of signs, s6



which is going to perform the role of a micro-interpreter and s1, s4 and s5 which will perform
the role of interpretants.
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Figure 18 - Interaction among Semions

How does the semion work ? The behavior of the semion is divided into five different
phases, which happen in sequence:

• The Evaluation Phase
• The Assignment Phase
• The Assimilation Phase
• The Transformation Phase
• The Consummation Phase

The first phase of interaction, the evaluation phase, starts when a given semion (in
our case, semion s6 ) chooses which other semions it wants to interact to. For this phase, he
must evaluate each available semion for interaction, and decide what it intends to do with this
semion after the interaction. For this purpose, for each transformation function available
within the semion, a set of interaction semions of the correct type is searched for. The semion
tests  all possible combinations of other semions matching the inputs types of his
transformation functions. Each possible combination is called then an enabling scope for this
particular transformation function, being basically a list of a potential set of other semions for
interaction. Each enabling scope is given an evaluation through the evaluation function,
which also sets if the interacting semions will be modified, simply released back to their
places or destroyed. This phase ends when the semion evaluate all alternative enabling scopes
and gives for each one an evaluation grade and an intended access mode. The intended access
mode sets up the intentions of this semion regarding its interacting semions. It must inform if
the semion allow sharing the interacting semion with other semions (for interactions of this
same type), and if the semion intends to destroy the interaction semion after the interaction.
In a second phase, the assignment phase, a central supervisory algorithm collects the desires
of interaction of all active semions in a semionic systems, and assigns to each active semion
an enabling scope, with the restriction that this assignment must avoid any sort of conflict in
the semions desires. Many different algorithms can be used in this phase. We developed for
our tests, an algorithm we called BMSA (Best Matching Search Algorithm), which assigns
the interacting semions to the active semions which better evaluated them, respected the
access mode intentions of all semions. In a third phase, called the assimilation phase, the
active semions assimilate the descriptive contents of his assigned interacting semions, making
a copy of them through his input gates to his input interface. After that, the input interface is
copied back again to the input states within his own descriptive content. Next to that, the
interacting semions are released back to environment, destroyed or transferred to a semion
output gate, depending on the access mode prescribed. In figure 18, semion s1 was transferred
to an output gate, semion s2 was released back to environment and semion s3 was destroyed.



On a fourth phase, the transformation phase, the assigned transformation function is
invoked, determining new values for the semion internal states and output states. In a fifth
phase, the consummation phase, the output states of the descriptive content is copied into
the output interface, in order to feed output interacting semions, which bind the output gates.
These output interacting semions may be input interacting semions which were trasferred to
an output gate, an external interacting semion specially designed to interact or a totally new
semion, created in the exact time of this phase. The descriptive content of these semions is
changed to the newer values stored on the output interface, and after this inoculation, the
output interacting semions are released back to the environment. This same process happens
on all active semions on a semionic system.

If we make an analysis of this behavior of a semionic system, we will see that in a big
system, with lots of semions interacting among them, there will be a combinatory explosion
during the evaluation phase if all semions are able to interact with all other semions. In order
to make this workable, a possible solution is to segregate semions to places, connecting
places with arcs and allowing semions interact only with semions in places which are
connected to the place where the wishful semion is located. This idea defines then a special
kind of semionic system we call a semionic network.

9 Semionic Networks and Semiotic Synthesis
Our definition of a semionic network, must now be matched with our ambitions of

semiotic synthesis, given in section 2. We remember that in section 3, we simplified our
semiotic synthesis scenario, transforming continuous regions of the representation space into
discrete knowledge units, as shown in figure 19 below.
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Figure 19 - Simplification of Semiotic Synthesis

If we now embed the interpreter into an active semion, and knowledge units into
passive semions, we reach our definition of a semionic network, as is shown in figure 20.
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Figure 20 - A Simple Semionic Network

Our aim with semionic networks is to design artificial minds, which we want to use
as a brain for intelligent systems. This semionic network can then be simulated or emulated in
terms of computer software, and be used to control intelligent systems.

In order to test this idea, we have created a software implementation - called
SNToolkit - Semionic Network Toolkit - that is a general tool for building, running and
testing semionic networks. This application was written in Java language, and has its details
described in (GUERRERO ET. AL., 1999). A screenshot  of the application is showed in figure
21 below. It has been used to solve some small toy problems (like e.g. the traveling salesman
problem, the eating philosophers problem, etc), simulate some kinds of neural networks,
genetic algorithms and fuzzy systems. We also built a semionic network to control an
autonomous guided vehicle that runs on a simulator. The semionic network showed in figure
21 is an initial sketch of such a network.

Figure 21 - The Semionic Network Toolkit



10 Conclusions
We envision many different applications for semionic networks, some of then under

construction by now, some of them still for the future. Our main purpose is to use semionic
networks in order to develop artificial minds for intelligent agents. It’s interesting to notice
that using semionic networks, we are able to depict and design the sign-processing schemes
we intend to happen within this artificial mind. Depending on the types of knowledge units
the passive semions encode, we will be able to process higher level types of signs, which
means higher levels of knowledge and knowledge processing. With semionic networks, we
are able to build up different mind architectures, since the already known BDI (Belief,
Desire, Intention) Agent Architecture  (SINGH ET.AL. 1999, WOOLDRIDGE 1999), NIST RCS
Architecture (ALBUS 1999), the AIS Architecture (HAYES-ROTH 1995) and others. Semionic
networks are able to implement fuzzy systems, neural networks and evolutionary
computation algorithms, and all sort of hybridisms among them (GUDWIN & GOMIDE 1997D),
so we can use these theoretical developments as parts and components of our artificial mind.
We aim also trying to implement architectures of mind as proposed by great philosophers of
the past, like Kant, Heidegger, Wittgenstein, etc. Despite this idea may seem to be a little bit
venturous (and maybe naive), some proposals in this sense already succeeded in producing
interesting kinds of intelligent systems (BETTONI 1998; BETTONI 2000).

Despite these more ambitious pretensions, we also noticed that our semionic networks
are also very good for modeling organization and sign processing within organizations. A
very new area of research, called organisational semiotics (ALDERSON ET.AL. 1999; LIU ET.
AL.2000) studies the interrelationships between individuals and groups, and between humans
and technology, functioning in organisations and society. We believe that the semionic
networks will be possibly used as a tool in order to model general organizations within the
organisational semiotics field of application. It may be used to model business companies,
commercial interactions (including e-business interactions), and not only able to model, but
to simulate such organizations, measuring results and eventually allowing us to test
alternative configurations for these organizations.

Other potential field of application is under manufacturing context. Flexible
manufacturing systems are systems that need to configurate themselves in order to attend
rapid changes in production and product lines. Despite very good models (CASSANDRAS

1993) do already exist to model manufacturing systems (including Petri Nets, Automata
Theory and others), these models were designed for  systems that do not change during time.
The semionic networks provide a framework allowing learning and adaptation within a
discrete event system framework, that would be very interesting for more complex
manufacturing problems.

If we make a more deep analysis of the behavior of a semionic network system, we
will see that it gives us a very powerful tool, that is both mathematically and computationally
addressed, being very convenient for a multitude of different applications, in engineering, in
philosophy and in cognitive sciences. Now, it’s just a matter of exploring these potentialities
and turning potentiality into facts.
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