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ABSTRACT

The paper discusses a possibility that a multiplicity of mind phenomena can be understood from
few fundamental principles of the mind organization, which are mathematically formulated. The
paper discusses the role of concepts and emotions in the information processing by the mind and
identifies an “elementary thought process” in which an event (in the outside world, or inside the
mind) is understood as a concept. Previous attempts in artificial intelligence at describing thought
processes are briefly reviewed and their fundamental (mathematical) limitations are discussed.
The role of emotional signals in overcoming these past limitations is emphasized. An elementary
thought process is related to semiotical notions of signs and symbols. It is further related to under-
standing, imagination, intuition, and to the role of aesthetic emotions and beauty in functioning of
the mind. Relationships between the mind and brain are briefly discussed. All the discussed no-
tions are grounded in psychological data and mathematical theory, yet knowledge of mathematics
is not assumed, discussions related to the mathematical theory are given conceptually, and the pa-
per is accessible to non-mathematicians. A theory described here could possibly serve as a prole-

gomenon to a physical theory of mind.

KEYWORDS: mind, physics, semiotics, symbols, fuzzy dynamic logic, neural net-

works, emotions, concepts, intelligent systems, aesthetics, beauty.

1 PHYSICS AND MATHEMATICS OF MIND

After creating a physical theory of the material world Newton devoted his life to de-
veloping a science of the mind, the physics of spiritual substance (Westfall 1983).
Newton failed at his second project and many contemporary physicists are still afraid
to look at mind as a physical system. This paper is an attempt to overcome this timid-
ity and to demonstrate that many of the mind phenomena can be explained from a few
basic principles that can be mathematically formulated, which is the essence of the

physical theory. Words like mind, thought, imagination, emotion, concept, aesthetics,

36



beauty are not often encountered alongside physics or mathematics. People use these
words in many ways colloquially, but their use in science and especially in mathemat-
ics of intelligence has not been uniquely defined and is a subject of active research
and ongoing debates 2. According to a dictionary (AHCD), mind includes conscious
and unconscious processes, especially thought, perception, emotion, will, memory,
and imagination, and it originates in brain. These constituent notions will be discussed

throughout the paper.

A broad range of opinions exists on the mathematical methods suitable for the de-
scription of the mind. Founders of artificial intelligence thought that formal logic was
sufficient (Newell 1983) and no specific mathematical techniques would be needed to
describe the mind (Minsky 1988). An opposite point of view is that there are few spe-
cific mathematical constructs, “the first principles” of mind. Among researchers tak-
ing this view is Grossberg, who suggested that the first principles include a resonant
matching between lower-level signals (Grossberg 1988) and higher-level representa-
tions and emotional evaluation of conceptual contents (Grossberg and Levine 1987);
Josephson, Meystel, Zadeh, and the author suggested specific principles of the mind
organization (Josephson 1997; Meystel 1995; Zadeh 1997; Perlovsky 2001) * . Ham-
eroff, Penrose, and the author (among others) considered quantum computational
processes that might take place in the brain (Hameroff 1994; Penrose 1994; Perlovsky
2001). Although, it was suggested that new unknown yet physical phenomena will
have to be accounted for explaining the working of the mind (Josephson 1997; Pen-
rose 1994). This paper describes mechanisms of mind that can be “implemented” by

classical-physics mechanisms of the brain neural networks.

2 THEORIES OF MIND AND COMBINATORIAL
COMPLEXITY

Understanding signals coming from sensory organs involves associating subsets of
signals corresponding to particular objects with internal representations of these ob-
jects. This leads to recognition of the objects and activates internal brain signals lead-
ing to mental and behavioral responses that constitute the understanding of the mean-

ing (of the objects).

Developing mathematical descriptions of the very first recognition step of this
seemingly simple association-recognition-understanding process has not been easy, a

number of difficulties have been encountered during the past fifty years. These diffi-

? For discussion and further references see: Grossberg 1988; Albus and Meystel 2001; Meystel and
Albus 2001; Perlovsky 2001.

* Fuzzy dynamic logic is discussed mathematically below; it is an extension of the fuzzy logic of
Zadeh, and it is not directly related to other techniques of "dynamic logic".
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culties have been summarized under the term combinatorial complexity (CC) (Per-
lovsky 2001). The problem was first identified in pattern recognition and classifica-
tion problems in the 1960s and was named “the curse of dimensionality” (Bellman
1961). The following thirty years of developing adaptive statistical pattern recogni-
tion and neural network algorithms designed for self-learning led to a conclusion that
these approaches often encountered CC of learning requirements: recognition of any
object, it seemed, could be learned if “enough” training examples could be used for an
algorithm self-learning. The required examples had to account for all possible varia-
tions of “an object”, in all possible geometric positions, in all combinations with other
objects, sources of light, etc., leading to astronomical numbers of required examples.
By the end of the 1960s a different paradigm became popular: rule-based systems (or
expert systems) were proposed to solve the problem of learning complexity. An initial
idea was that rules would capture the required knowledge and eliminate a need for
learning. Rule systems work well when all aspects of the problem can be predeter-
mined. However, rule systems and expert systems in the presence of unexpected vari-
ability, encountered CC of rules: more and more detailed sub-rules and sub-sub-rules
had to be specified. In 1980s model-based systems became popular, which were pro-
posed to combine advantages of adaptivity and rules by utilizing adaptive models, but
they encountered computational CC (N and NP complete algorithms). The CC be-
came a ubiquitous feature of intelligent algorithms and seemingly, a fundamental
mathematical limitation. The reason was that considered algorithms had to evaluate
multiple combinations of elements and the number of combinations is very large: say,
take 100 elements (not too large a number), but the number of combinations of 100
elements is 100", a number larger than the number of elementary particles in a Uni-

verse, and no computer would ever be able to compute that many combinations.

Combinatorial complexity has been related to the type of logic, underlying various
algorithms and neural networks (Perlovsky 1998a). Formal logic is based on the “law
of excluded third”, according to which every statement is either true or false and noth-
ing in between. Therefore, algorithms based on formal logic have to evaluate every
little variation in data or internal representations as a separate logical statement; a
large number of combinations of these variations causes combinatorial complexity. In
fact, combinatorial complexity of algorithms based on logic has been related to the
Godel theory: it is a manifestation of the incompleteness of logic in finite systems
(Perlovsky 1996a). Multivalued logic and fuzzy logic were proposed to overcome
limitations related to the law of excluded third (Jang et al 1996). Yet the mathematics
of multivalued logic is no different in principle from formal logic. Fuzzy logic en-

countered a difficulty related to the degree of fuzziness: if too much fuzziness is
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specified, the solution does not achieve a needed accuracy, if too little, it might be-

come similar to formal logic.

3 MIND: CONCEPTS AND EMOTIONS

The seemingly fundamental nature of the mathematical difficulties discussed above
led many to believe that classical physics cannot explain the working of the mind.
Yet, I would like to emphasize another aspect of the problem: often mathematical
theories of the mind were proposed before the necessary physical intuition of how the
mind works was developed. Newton, as often mentioned, did not consider himself as
evaluating various hypothesis about the working of the material world, he felt that he
possessed an intuition (Westfall 1983), or what we call today a physical intuition
about the world. A particular intuition about the mind is that it operates with emo-
tions. An essential role of emotions in the working of the mind was analyzed from the
psychological and neural perspective by Grossberg (1987) from the neuro-
physiological perspective by Damasio (1995) and from the learning and control per-
spective by the author (Perlovsky 1998b, 1999). One reason for the engineering com-
munity being slow in adopting these results is the cultural bias against emotions as a
part of thinking processes. Plato and Aristotle thought that emotions are “bad” for in-
telligence, this is a part of our cultural heritage, and the founders of Artificial Intelli-
gence repeated it. Yet, as discussed in the next section, combining conceptual under-
standing with emotional evaluations might be crucial for overcoming the combinato-

rial complexity as well as the related difficulties of logic.

Let me summarize briefly and in the most simplified way several aspects of the
working of the mind as it is understood today, which might be crucial to the develop-
ment of the theory of the mind. Mind emerged in evolution for the purpose of survival
and therefore it serves for a better satisfaction of the basic instincts, which emerged as
survival mechanisms even before mind. Instincts operate like internal sensors: for ex-
ample, when the sugar level in the blood goes below a certain level an instinct “tells
us” to eat. That which is most accessible to our consciousness mechanism of the
mind, are concepts: the mind operates with concepts. Concepts are like internal mod-

els of the objects and situations.

What is the relationship between instincts and concepts and what is the mecha-
nism relating them? An ability for concepts evolved for instinct satisfaction and emo-
tions are neuronal signals connecting instinctual and conceptual brain regions.
Whereas in colloquial usage, emotions are often related to facial expressions, higher
voice pitch, exaggerated gesticulation — these are the outward signs of emotions,

serving for communication. A more fundamental role of emotions within the mind
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system is that emotional signals evaluate concepts for the purpose of instinct satisfac-
tion. This evaluation is not according to rules or concepts (as in rule-systems of artifi-
cial intelligence), but according to a different instinctual-emotional mechanism de-
scribed in the next section. This emotional mechanism is crucial for breaking out of

the “vicious circle” of combinatorial complexity.

The result of conceptual-emotional understanding of the world are actions (or be-
havior) in the outside world or within the mind. In this paper we touch on only one
type of behavior, the behavior of improving understanding and knowledge about the
world (and self). In the next section we describe in notional terms with a minimum of
mathematics, a mathematical theory of a “simple” conceptual-emotional recognition
and understanding. As we will discuss, in addition to concepts and emotions, it in-
volves with necessity mechanisms of intuition, imagination, conscious, unconscious,
and aesthetic emotion. And this process is intimately connected to an ability of mind
to form symbols and interpret signs.

Mind involves a hierarchy of multiple levels of concept-models, from simple per-
ceptual elements (like an edge, or a moving dot), to concept-models of object, to
complex scenes, and up the hierarchy toward the concept-models of the meaning of
life and purpose of our existence. Hence the tremendous complexity of the mind, yet
relatively few basic principles of the mind organization go a long way explaining this
system.

4 MODELING FIELD THEORY (MFT)

Modeling field theory (Perlovsky 2001), (summarized below, associates lower-level
signals with higher-level concept-models (or internal representations), resulting in an
understanding of signals, while overcoming the difficulties of CC described in Section
2. It is achieved by using measures of similarity between the concept-models and the
input signals combined with a new type of logic, the fuzzy dynamic logic. Modeling
field theory is a multi-level, hetero-hierarchical system. This section describes a basic
mechanism of interaction between two adjacent hierarchical levels of signals (fields
of neural activation); sometimes, it will be more convenient to talk about these two

signal-levels as an input to and output from a (single) processing-level.

At each level, the output are concepts recognized (or formed) in input signals. In-
put signals X are associated with (or recognized, or grouped into) concepts according
to the representations-models and similarity measures at this level. In the process of
association-recognition, models are adapted for better representation of the input sig-
nals; and similarity measures are adapted so that their fuzziness is matched to the
model uncertainty. The initial uncertainty of models is high and so is the fuzziness of
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the similarity measure; in the process of learning models become more accurate and
the similarity measure more crisp, the value of the similarity increases. I call this
mechanism fuzzy dynamic logic. Let me repeat again: knowledge of mathematics is
not required to read the following, the mathematical equations given below could be

just skipped, their meanings are explained in plain language.

4.1 INTERNAL MODELS, LEARNING, AND SIMILARITY

During the learning process, new associations of input signals are formed resulting in
the evolution of new concepts. Input signals {X(n)}, is a field of input neuronal syn-
apse activation levels, n enumerates the input neurons and X(n) are the activation lev-
els; a set of concept-models {h} is characterized by the models (representations)
{M, (n)} of the signals X(n); each model depends on its parameters {S,}. In a highly
simplified description of a visual cortex, n enumerates the visual cortex neurons, X(n)
are the “bottom-up” activation levels of these neurons coming from the retina through
visual nerve, and M, (n) are the “top-down” activation levels (or priming) of the visual
cortex neurons from previously learned object-models*. The learning process attempts
to “match” these top-down and bottom-up activations by selecting “best” models and
their parameters. Mathematically, learning increases a similarity measure between the
sets of models and signals, L({X(n)},{M,(n)}). The similarity measure is a function
of model parameters and associations between the input synapses and concepts-
models. It is constructed in such a way that any of a large number of objects can be
recognized, no matter if they appear on the left or on the right. Correspondingly, a
similarity measure is designed so that it treats each concept-model as an alternative

for each subset of signals

LXMDY =[] D rh) I(X(n) | M, (n)); (1)

neN heH

here 1(X(n)[M; (n)) (or simply I(n/h)) is a conditional partial similarity between one
signal X(n) and one model M, (n), and all possible combinations of signals and mod-

els are accounted for in this expression. Parameters r(h) are proportional to the num-

ber of signals {n} associated with the model h.

In the process of learning, concept-models are constantly modified. From time to
time a system forms a new concept, while retaining an old one as well; alternatively,
old concepts are sometimes merged. [Formation of new concepts and merging of old

ones require a modification of the similarity measure (1); the reason is that more

*In fact there are many levels between the retina, visual cortex, and object-models.
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models always result in a better fit between the models and data. This is a well known
problem, it can be addressed by reducing (1) using a “penalty function”, p(N,M) that
grows with the number of models M, and this growth is steeper for a smaller amount
of data N. For example, an asymptotically unbiased maximum likelihood estimation
leads to multiplicative p(N,M) = exp(-Nyar/2), where Ny, 1s a total number of adaptive
parameters in all models (this penalty function is known as Akaike Information Crite-

rion, see (Perlovsky 2001) for further discussion and references)].

4.2 FUZZY DYNAMIC LOGIC AND MFT

The learning process consists in estimating model parameters S, and associating sub-

sets of signals with concepts by maximizing the similarity (1). Note, that (1) contains
a large number of combinations of models and signals, a total of H" items; this was a

cause for the combinatorial complexity of the past algorithms discussed previously.

Modeling field theory (MFT) solves this problem by utilizing fuzzy dynamic logic
(Perlovsky 2001; Perlovsky 1996b, 1997). MFT introduces association variables
f(h|n)

f(hjn) = r(h) I(njh) / Y r(h') I(n[h). )

h'eH

These variables give a measure of correspondence between a signal X(n) and a model

M, relative to all other models, h’. A mechanism, an internal dynamics, of the Model-
ing Fields (MF) is defined as follows,

df(hn)/dt = f(hn) Y, {[8,,, - f(h'[n)]-[Olnl(nh)/OM, ] OM /38, -dS,/dt,  (3)

h'eH

dsh/dt={JNf(h|n)[81n1(n|h)/aMh]aM'h/ash, (4)

here §,,, is 1 if h=h', 0 otherwise. Parameter t is the time of the internal dynamics of

the MF system (like a number of internal iterations). The following theorem was

proven.

Theorem. Equations (2) through (4) define a convergent dynamic system MF with sta-
tionary states defined by max (g;1 L.

In plain language this means that the above equations indeed result in concept-
models in the “mind” of the MFT system, which are most similar [in terms of similar-

ity (1)] to the sensory data. Despite a combinatorially large number of items in (1), a
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computational complexity of the MF method is relatively low, it is linear in N, it
could be implemented by a physical system (like the brain) and therefore it may cor-
respond to the working of the mind. These equations describe a closed loop system,
which is illustrated in the block-diagram in Fig. 1. A reference to the closed loop em-
phasizes that the loop can sustain its operations on its own, the loop is not entirely

closed in that there are input data into the loop and output concepts from the loop.

Result: Concepts-objects (h)

A
Similarity > Action:
measures model adapta-
X(n) My (n) \ tion
MODELS, M,
Data X(n)

Figure 1: For a single level of MFT, input signals are unstructured data {X(n)} and output signals are
recognized or formed concepts {h}. The MFT equations (2) through (4) describe a continuous closed-
loop operation involving input data, similarity measures, models, and actions of the model adaptation.

4.3 MFT HIERARCHICAL ORGANIZATION

The previous sub-section described a single processing layer in a hierarchical MFT
system. An input to each layer is a set of signals X(n), or in neural terminology, an
input field of neuronal activations. An output are the activated models My(Sy,n); it is a
set of models or concepts recognized in the input signals. Equations (2-4) describe a
loop-process: at each iteration (or internal-time t) the l.h.s. of the equations contain
association variables f(hjn) and other model parameters computed at the previous it-
eration. In other words, the output models “act” upon the input to produce a “refined”
output models (at the next iteration). This process is directed at increasing the similar-
ity between the models and signals. It can be described as an internal behavior gener-
ated by the models.

The output models initiate other actions as well. First, activated models (neuronal
axons) serve as input signals to the next processing layer, where more general con-
cept-models are recognized or created. Second, concept-models along with the corre-
sponding instinctual signals and emotions may activate behavioral models and gener-
ate behavior directed into the outside world (a process not contained within the above
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equations). In general, a higher level in a hierarchical system provides a feedback in-
put into a lower level. For example, sensitivity of retinal ganglion cells depends on the
objects and situations recognized higher up in the visual cortex; or a gaze is directed
based on which objects are recognized in the field of view. More complete interac-

tions within this hierarchical organization are illustrated in Fig.2.

Result: Concept-objects

* i
’ v
Similarity > _ :
measures Attention / Action
X(n) M,
MODELS
Data < Sensors /
Effec?rs
Input: World/scene J

Figure 2: More details of integrated interactions are shown for a single-level loop of MFT at the bot-
tom of the hierarchy: input data X(n) are coming from the outside world through sensors; sensors and
effectors are acting in the surrounding world based on the results of information processing inside the
MFT system.

Concept-objects identified at the output of the lower level of MFT system in Fig.2
become input signals to the next MFT level which identifies more general concepts of
relationships among objects and situations; at the same time more general concepts of
understanding identified at a higher level activate behavioral concept-models that af-
fect processes at a lower level. The agent processes, or the loop-processes of model-
concept adaptation, understanding and behavior generation continue up and down the
hierarchy of the MFT levels.

The loop of operations of MFT can be better described as multiple loops each in-
volving a model; to some extent these multiple loops are independent, yet some mod-
els interact when they are associated with the same data pieces. Therefore MFT is an
intelligent system composed of multiple adaptive intelligent agents which possess a
degree of autonomy yet interact among themselves. Each concept-model along with
the similarity measure and behavioral response is a continuous loop of operations, in-
teracting with other agents from time to time; an agent is "dormant" until activated by

a high similarity value. When activated, it is adapted to the signals and other agents,
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so that the similarity increases. Every piece of signal may activate several concepts, or
agents, in this way data provide evidence for the presence of various objects (or con-
cepts). Agents compete with each other for evidence (data), while adapting to the new

signals.

S MFT THEORY OF MIND

5.1 MFT DYNAMICS

Equations (2-4) describe an elementary process of perception or cognition, in which a
large number of model-concepts compete for incoming signals, model-concepts are
modified and new ones are formed, and eventually, more or less definite connections
[high or low values of f(h|n), varying between 0 and 1] are established among signal
subsets on the one hand, and model-concepts on the other. Perception refers to proc-
esses in which the input signals come from sensory organs and model-concepts corre-
spond to objects in the surrounding world. Cognition refers to higher levels in the hi-
erarchy where the input signals are concepts activated at lower levels and model-
concepts are more complex and correspond to situations and relationships among

lower-level concepts.

A salient mathematical property of this processes ensuring a smooth convergence
is a correspondence between uncertainty in models (that is, in the knowledge of model
parameters) and uncertainty in associations f(h|n). In perception, as long as model pa-
rameters do not correspond to actual objects, there is no match between models and
signals; many models poorly match many objects, and associations remain fuzzy (nor
1 nor 0). Eventually, one model (h') wins a competition for a subset {n'} of input sig-
nals X(n), when parameter values match object properties, and f(h'|n) values become
close to 1 for ne {n'} and 0 for ng {n'}. This means that this subset of data is recog-
nized as a specific object (concept). Upon the convergence, the entire set of input sig-
nals {n} is divided into subsets, each associated with one model-object, uncertainties
become small, and fuzzy a priori concepts become crisp concepts. Cognition is differ-
ent from perception in that models are more general, more abstract, and input signals
are the activation signals from concepts identified (cognized) at a lower hierarchical
level; the general mathematical laws of cognition and perception are similar in MFT
and constitute a basic principle of the mind organization. Let us discuss relationships
between the MFT theory and concepts of mind developed in psychology, philosophy,
linguistics, aesthetics, neuro-physiology, neural networks, artificial intelligence, pat-

tern recognition, and intelligent systems.
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5.2 ELEMENTARY THOUGHT-PROCESS, CONSCIOUS AND
UNCONSCIOUS

A thought-process or thinking involves a number of sub-processes and attributes, in-

cluding internal representations and their manipulation, attention, memory, concept

formation, knowledge, generalization, recognition, understanding, meaning, predic-

tion, imagination, intuition, emotion, decisions, reasoning, goals, behavior, conscious

and unconscious (Grossberg 1988; Meystel 1995; Perlovsky 2001).

A “minimal” subset of these processes has to involve mechanisms for afferent and
efferent signals, (Grossberg, 1988), in other words, bottom-up and top-down signals
coming from outside (external sensor signals) and from inside (internal representation
signals). According to Carpenter and Grossberg (1987) every recognition and concept
formation process involves a “resonance” between these two types of signals. In
MFT, at every level in a hierarchy the afferent signals are represented by the input
signal field X, and the efferent signals are represented by the modeling field signals
Mp; resonances correspond to high similarity measures 1(n|h) for some subsets of {n}
that are “recognized” as concepts (or objects) h. The mechanism leading to the reso-
nances is given by (2-4), and we call it an elementary thought-process. The elemen-
tary thought-process involves elements of conscious and unconscious processes,
imagination, memory, internal representations, concepts, instincts, emotions, under-

standing and behavior as further described later.

A description of working of the mind as given by the MFT dynamics was first
provided by Aristotle, describing thinking as a learning process in which an a priori
form-as-potentiality (fuzzy model) meets matter (sensory signals) and becomes a
form-as-actuality (a concept). Jung suggested that conscious concepts are developed
by mind based on genetically inherited structures of mind, archetypes, which are inac-
cessible to consciousness (1934) and Grossberg (1988) suggested that only signals
and models attaining a resonant state (that is signals matching models) reach con-

sciousness.

5.3 UNDERSTANDING

In the elementary thought process, subsets in the incoming signals are associated with
recognized model-objects, creating phenomena (of the MFT-mind) which are under-
stood as objects, in other words signal subsets acquire meaning (e.g., a subset of reti-
nal signals acquires a meaning of a chair). There are several aspects to understanding
and meaning. First, object-models are connected (by emotional signals: Grossberg and
Levine 1987, Perlovsky 2001; Perlovsky 1998b) to instincts that they might satisfy,
and also to behavioral models that can make use of them for instinct satisfaction. Sec-
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ond, an object is understood in the context of a more general situation in the next
layer consisting of more general concept-models, which accepts as input-signals the
results of object recognition. That is, each recognized object-model (phenomenon)
sends (in neural terminology, activates) an output signal; and a set of these signals
comprises input signals for the next layer models, which ‘cognize’ more general con-
cept-models. And this process continues up and up the hierarchy of models and mind
toward the most general models a system could come up with, such as models of uni-
verse (scientific theories), models of self (psychological concepts), models of the
meaning of existence (philosophical concepts), models of a priori transcendent intelli-

gent subjects (theological concepts).

5.4 IMAGINATION

Imagination involves excitation of a neural pattern in a visual cortex in the absence of
an actual sensory stimulation (say, with closed eyes) (Grossberg 1988). Imagination
was often considered to be a part of thinking processes; Kant (1790) emphasized the
role of imagination in the thought process, he called thinking “a play of cognitive
functions of imagination and understanding”. Whereas the pattern recognition and
artificial intelligence algorithms of the recent past would not know how to relate to
this (Newell 1983; Minsky 1988), the Carpenter and Grossberg resonance model
(1987) and the MFT dynamics both describe imagination as an inseparable part of
thinking: imagined patterns are top-down signals that prime the percepting cortex ar-
eas (priming is a neural terminology for making neural cells to be more readily ex-
cited). In MFT, the imagined neural patterns are given by models M,. MFT (in
agreement with neural data) just adds details to Kantian description: thinking is a play
of higher-hierarchical-level imagination and lower-level understanding. Kant identi-
fied this “play” [described by (3-6) or (7-12)] as a source of aesthetic emotion; model-

ing aesthetic emotion in MFT is described later.

5.5 MIND VS. BRAIN

Historically, the mind is described in psychological and philosophical terms, whereas
the brain is described in terms of neurobiology and medicine. Within scientific explo-
ration the mind and brain are different description levels of the same system. Estab-
lishing relationships between these description is of great scientific interest. Today we
approach solutions to this challenge (Grossberg 2000), which eluded Newton in his
attempt to establish physics of “spiritual substance”(Westfall 1983). General neural
mechanisms of the elementary thought process (which are similar in MFT and ART
(Carpenter and Grossberg, 1987) have been confirmed by neural and psychological

experiments, this includes neural mechanisms for bottom-up (sensory) signals, top-
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down “imagination” model-signals, and the resonant matching between the two
(Grossberg 1988; Zeki 1993; Freeman 1975). Adaptive modeling abilities are well
studied with adaptive parameters identified with synaptic connections (Koch and
Segev 1998; Hebb 1949); instinctual learning mechanisms have been studied in psy-
chology and linguistics (Piaget 2000; Chomsky 1981; Jackendoff 2002; Deacon
1998).

5.6 INSTINCTS AND EMOTIONS.

Functioning of the mind and brain cannot be understood in isolation from the sys-
tem’s “bodily needs”. For example, a biological system (and any autonomous system)
needs to replenish its energy resources (eat); this and other fundamental unconditional
needs are indicated to the system by instincts, which could be described as internal
sensors. Emotional signals, generated by this instinct are perceived by consciousness
as “hunger”, and they activate behavioral models related to food searching and eating.
In this paper we are concerned primarily with the behavior of recognition: instinctual
influence on recognition modify the object-perception process (3) - (6) in such a way,
that desired objects “get” enhanced recognition. It can be accomplished by modifying
priors, r(h), according to the degree to which an object of type h can satisfy a particu-
lar instinct. Details of these mechanisms are not considered here, except for a specific

instinct considered below.

5.7 AESTHETIC EMOTIONS AND INSTINCT FOR KNOWLEDGE.

Recognizing objects in the environment and understanding their meaning is so impor-
tant for human evolutionary success that there has evolved an instinct for learning and
improving concept-models. This instinct (for knowledge and learning) is described in
MFT by maximization of similarity between the models and the world, (1). Emotions
related to satisfaction-dissatisfaction of this instinct are perceived by us as harmony-
disharmony (between our understanding of how things ought to be and how they ac-
tually are in the surrounding world). According to Kant (1790) these are aesthetic
emotions (emotions that are not related directly to satisfaction or dissatisfaction of
bodily needs).

5.8 INTUITION

Intuition includes an intuitive perception (imagination) of object-models and their re-
lationships with objects in the world, as well as higher-level models of relationships
among simpler models. Intuition involves fuzzy unconscious concept-models, which
are in a state of being learned and being adapted toward crisp and conscious models (a

theory); such models may satisfy or dissatisfy the knowledge instinct in varying de-

48



grees before they are accessible to consciousness, hence the complex emotional feel
of an intuition. The beauty of a physical theory discussed often by physicists is re-
lated to satisfying our feeling of purpose in the world, that is, satisfying our need to

improve the models of the meaning in our understanding of the universe.

Beauty. Harmony is an elementary aesthetic emotion related to improvement of
object-models. Higher aesthetic emotions are related to the development of more
complex “higher” models: we perceive an object or situation as aesthetically pleasing
if it satisfies our learning instinct, that is the need for improving the models and in-
creasing similarity (1). The highest forms of aesthetic emotion are related to the most
general and most important models. According to Kantian analysis, among the highest
models are models of the meaning of our existence, of our purposiveness or intention-
ality, and beauty is related to improving these models: we perceive an object or a
situation as beautiful, when it stimulates improvement of these highest models of

meaning. Beautiful is what “reminds” us of our purposiveness.

5.9 THEORY TESTING AND FUTURE DIRECTIONS.

The general neural mechanisms of the elementary thought process, which includes
neural mechanisms for bottom-up (sensory) signals, top-down “imagination” model-
signals, and the resonant matching between the two (Grossberg 1988; Zeki 1993;
Freeman 1975), have been confirmed by neural and psychological experiments (these
mechanisms are similar in MFT and ART, Carpenter and Grossberg, 1987). Adaptive
modeling abilities are well studied and adaptive parameters have been identified with
synaptic connections (Koch and Segev 1998; Hebb 1949); instinctual learning mecha-
nisms have been studied in psychology and linguistics (Piaget 2000; Chomsky 1981).
Ongoing and future research will confirm, disprove, or suggest modifications to spe-
cific mechanisms of model parameterization and parameter adaptation (5) or (8), re-
duction of fuzziness during learning (9), similarity measure (1) as a foundation of aes-
thetic instinct for knowledge, relationships between psychological and neural mecha-
nisms of learning on the one hand and, on the other, aesthetic feelings of harmony and
emotion of beautiful. Differentiated forms of (1) need to be developed for various
forms of the knowledge instinct (child development, language learning, etc.) Future
experimental research needs to study in details the nature of hierarchical interactions:
to what extent the hierarchy is “hardwired” vs. adaptively emerging; what is a hierar-
chy of learning instinct? A theory of emerging hierarchical models will have to be de-

veloped (that is, adaptive, dynamic, fuzzy hierarchy- heterarchy).
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5.10 THINKING PROCESS AND SEMIOTICS

Semiotics studies processes of codification in nature (Peirce 1935-66; Taborsky,
1999); classical semiotics studied the symbol-content of culture (Sebeok 1995). This
paper concentrates on processes in the mind that mediate between sensory data and
concepts. For example, consider a written word "chair". It can be interpreted by a
mind to refer to something else: an entity in the world, a specific chair, or the concept
"chair" in the mind. In this process, the mind, or an intelligent system is called an in-
terpreter, the written word is called a sign, the real-world chair is called a desig-
natum, and the concept in the interpreter's mind, the internal representation of the re-
sults of interpretation is called an interpretant of the sign. The essence of a sign is that
it can be interpreted by an interpreter to refer to something else, a designatum. This
process of sign interpretation is an element of a more general process called semiosis,
which consists of multiple processes of sign interpretation at multiple levels of the

mind hierarchy.

In mathematics and in “Symbolic AI” there is no difference between signs and
symbols. Both are considered as notations, arbitrary non-adaptive entities with axio-
matically fixed meaning. But in general culture, symbols are understood also as psy-
chological processes of sign interpretation. Jung emphasized that symbol-processes
connect conscious and unconscious (Jung 1969), Pribram wrote of symbols as adap-
tive, context-sensitive signals in the brain, whereas signs he identified with less adap-

tive and relatively context-insensitive neural signals (Pribram 1971).

In classical and natural semiotics (Peirce 1935-66; Sebeok 1995, Morris 1971) the
words sign and symbol are not used consistently; in this paper, a sign means some-
thing that can be interpreted to mean something else (like a mathematical notation, or
a word), and the process of interpretation is called a symbol-process, or symbol. In-
terpretation, or understanding of a sign by the mind according to MFT is due to the
fact that a sign (e.g., a word) is a part of an object-model (or a situation-model at
higher levels of the mind hierarchy). The mechanism of a sign interpretation therefore
involves first an activation of an object-model, which is connected to instincts that the
object might satisty, and also to behavioral models that can make use of this object for
instinct satisfaction. Second, a sign is understood in the context of a more general
situation in the next layer consisting of more general concept-models, which accepts
as input-signals the results of lower-level sign recognition. That is, recognized signs
comprise input signals for the next layer models, which ‘cognize’ more general con-

cept-models.

A symbol-process of a sign interpretation coincides with an elementary thought-

process. Each sign-interpretation or elementary thought process, a symbol, involves
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conscious and unconscious, emotions, concepts, and behavior; this definition connect-
ing symbols to archetypes (fuzzy unconscious model-concepts) corresponds to a us-
age in general culture and psychology. As described previously, this process contin-
ues up and up the hierarchy of models and mind toward the most general models. In
semiotics this process is called semiosis, a continuous process of creating and inter-
preting the world outside (and inside our mind) as an infinite hierarchical stream of

signs and symbol-processes.
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