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ABSTRACT

A model is one of the most fundamental concepts: it isaformal and generalized explanation of a phenomenon.
Only with models can we bridge the particulars and predict the unknown. Virtualy all our intellectual work turns
around finding models, eval uating models, using models. Because models are so pervasive, it makes sensetotake
alook at modelling itself. Wewill approach this problem, of course, by building amodel of the process of model-
ling.

1. AGENTS

Todiscussmodelling, we will weave an imaginary universe containing both the modeller and nature,
illustrated in Figure 1. Wewill not use the computer metaphor, asit has been replaced by the meta-
phor of the autonomous agent over the past decades (Russell & Norvig, 1995). Of course, an
autonomous agent is not anovel idea, and has much in common with other work that dates at least
back to von Uexkill'swork (Salthe, 2001). The autonomous agent is not a passive entity with input
and output. Instead, an autonomous agent has a persistent existence through space and time: it can
ignore the perceptions, and it does not need to act.
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Figure 1: Theintelligent agent. The universe contains an agent that perceives through its sensors, and actsthrough its
effectors. The outside world is unknown, but not necessarily unknowable.

The outside world is outside its reach except through the agent's sensors and effectors. Still, the
autonomous agent may build a picture of the world inside itself, and the picture may include the
agent itself, which we render with the small blob within the agent's model in Figure 1. This should
not be seen asrecursion, however: it isjust an auto-portrait. Externalists feel more comfortable by
assuming aworld, as seen by a God or as represented by a certain model of objective redlity, and
placing the agent in the world; internalists prefer not to postul ate such amodel, so they first assume
the agent, and then place the world inside it. Even if the differences in perspective are often over-
whelming, there are no major differences for modelling: in both cases there are sensors and effec-
tors.

Inside the agent's mind we separate the model from the utility. The model roughly correspondsto
the descriptive and the mental: the model seeks to represent the truth. The utility, however, corre-
sponds to the normative and the emotional: the utility chooses the desirable. Thisway, the sensors
are not mapped directly to the actions, and the agent is not amindless automaton. Instead, the agent
learns amodel of thereality, and chooses the action with the highest utility. Our concernin thistext
will be the learning.

Theagent isan existential system, soit isnot completely freeinitschoices: if too many choices
arewrong, the agent is prevented from making any more of them because it breaksdown. Itscurios-
ity, pursuit of truth, novelty and aesthetics might wish to allocate plenty of utility to building faith-
ful, novel and beautiful models. At the sametime, the agent's body strugglesto keep the agent alive
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by restricting the freedom of its artistic and intellectual pursuits. In all, we may imagine a certain
hierarchy of utilities inside the agent, similar to Maslow's hierarchy of needs.

Therole of the utility isto judge the actions. But actions are often judged by the utilities of their
consequences, and the models are judged by the utilities of their actions' consequences, and the
agentsarejudged by their models' actions' consequence utilities. Just asthe agent haslimited insight
into the actuality of the nature, it also hasalimited insight into the consequences of itsactions. The
agent does not know the consequences, but uses utility to makethe decision. Thisway, utility should
itself be seen as a model of the desirability of the consequences before the consequences actually
occur. Even if the utility appears fixed, utility itself is subject to change and selection through the
process of evolution.

Moreover, the agent does not have full accessto the actuality aroundit. It isrestricted to the per-
cepts it can make out of the environment. The agents and their sensors were not selected through
their ability to make beautiful, novel and faithful models, but primarily by how much these models
hel ped them survive. Hence, the agent has limited insight into the fidelity of its perceptions. Never-
theless, from these perceptions, the agent constructs its reality, the model of actuality.

2. MODELS

L et us now focus on aparticular problem. The agent has assembled anumber of perceptions, and
organized them formally in theform of instances. Thisisreferred to asdata or adataset. The "data
isanecessarily internal representation of either internal or external measurements, samples or ob-
jects. An example of datais shownin Table 1.

stage subject particulars formallza-
B tion
1 percepts /
2| representation data  instances, examples  Instances
, algo- heuristics, proce-

3 learning rithm dures Programs
4| knowledge model  hypotheses, concepts Languages
decision- : s i
5 making actions utility, preferences  Policies

6| consequences /

Table1: A model-producing factory. The agent hasno direct control of or insight into the objectivereality (before stage
1), and no control of or knowledge about the consegquences of its actions (after stage 6).
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The agent wonders whether the outcome of the coin toss can be predicted from the weather out-
side. Such ability would yield major utility in various gambling endeavors.

Only the attribute Y islabelled, as the agent does not strive to predict the weather (it can easily
be observed), only the outcome of the coin toss (which cannot be observed a priori). This already
shows how the model is constrained by the nature of the agent's existence: if the agent's desire was
the direct pursuit of truth, predicting the weather would be just asinteresting as predicting the coin
toss. What needs to be modelled is only what is not already known or cheaper to observe or verify
directly.

2.1. MECHANICAL MODELLING

Table 2 attemptsto summarizethe flow of information from the perceptsto the consequenceswithin
a specific agent.

the la-

bel

J

attributes — X Y

an instance ran H
-

an instance sunny H
-

an instance sunny T
-

rain H

sunny T

sunny T

rain H

rain H

Table 2: A non-deterministic data set. The weather is described with an unlabelled attribute X with the range Ry =
{rain, sunny}. The coin is modelled as alabelled attribute Y with the range Ry = {H,T}. In general it isimpossible to
predict the coin toss from the weather, and there is not enough datato be truly certain in our ability to predict headsin
rain.

This conveyor belt isjudged as awhole by the outside world. We can formalize different stagesin
the process. First, the percepts can be crystallized into the form of instances and examples. Theago-
rithmsfor building models are formalized as a gorithms and procedures, and take the instances and
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examples and operate on them to create model s, seeking to maximizethe quality of themodel asas-
sessed by the utility.

The model-in-progressisexpressed in aspecific language. Thislanguage differsfrom the notion
of the natural language which isintended for communication between agents, but istheinternal “lan-
guage' in which the models are written. For example, alogically-minded agent would have alan-
guageif X=a then Y=b, whereaisaparticular value of theattribute X and b isaparticular value of
the labelled attribute Y. The agent could then create a model that says if X=rain then Y=H. Of
course, there are other languages for expressing models, such as mathematical expressions (y = axx
+b), case-based inferences (if X like a then Y like b), or non-causal inferences(X=a with Y=b).
The agent employs these models to choose actions with good utility.

2.2. ORGANIC DEVELOPMENT OF MODELS

While the linear view expresses the creation of amodel as alinear sequence of operations, the de-
velopmental view interpretsthe model asresulting from theinteraction of four restraints acting upon
it. These restraints can be formalized with the schemein Figure 2. The model to be learned is con-
strained between four surrounding layers in an intersecting specification hierarchy (Salthe, 1993).
Under theserestraints, the model emergesorganically. Therestraints need not befixed. Onthe scalar
scale, the modelling is performed inside the agent.

Utility, language, algorithm and data can be interpreted as Aristotelian causes of the model: the
model cannot be independent of either of them. The algorithmiswhat isdriving the construction of
the model. The language is what the model is made of. The data is what defines the form of the
model: obviously the model should be consistent with theempirical data. Finally, the model isgoing
to be judged though the utility of the actions chosen by using the model.
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Figure 2: The model develops under the pressure of constraints. The constraints are the Aristotelian causes: the

capacity of the algorithm, the expressive power of the language, the quest for utility and the consistency with the
data.

3. DICHOTOMIESIN LEARNING

There are numerousviews of inductivelearning and statistical inference. Machinelearningisstill an
activefield of research and there are different methodol ogies competing with one another. With abit
of emotional distance we see, however, that many of the competing approachesin fact approach the
same problem, but from a different direction. Our description will briefly and simply touch upon
several ideasin machine learning, artificial intelligence and statistics. Thelist should be seen asan
opinionated snapshot, not as an exhaustive survey.

3.1. IDENTIFICATION VSAPPROXIMATION

The Probably Approximately Correct (PAC) learning theory (Valiant, 1984) was concerned with
problems of deductive identification. We assume that the data results from measurement of a spe-
cific but unknown concept that determines whether an instanceistrue or not. The concept itself isa
statement in aparticular language, and thetask of learning isto identify the concept that yielded the
instances. Valiant proved that the learning problem is tractable for several non-trivial concept lan-
guages, such as conjunctive and digunctive normal form expressions. Thecriterioninthisidentifica-
tion approachisto arrive at the true definition of the concept. Here, our term “identification'isto be
distinguished from “system identification', an approach to modelling which includes approximation.

The utility isnot needed because the languageistrusted. Thelanguageisthe ontology. M ost sci-
entists believe that mathematics is the right language for modelling nature, for example. We often
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liketo think that our brain (asakind of alanguage) is powerful enough to understand the truth of the
universe. Many philosophers deem that the language of causal logic is sufficient for acomplete de-
scription of how the universe evolves and revolves, and that everything can indeed belinked into an
endless thread of chain and effect.

| dentification assumes that the agent's |anguage matches the language of the concept. Thisisa
strong assumption: we are rarely sure that our language as such can truly describe the reality! For
that reason, the agnostic approach to learning (Haussler, 1992) no longer expectsthat the model will
betrue. Theapproximation approach no longer seekstruth, but only seeksto minimizethe error that
the model makes. The language is epistemology. For example, the agent will decide between using
the barometer, the weather channel, or a combination of both in order to minimizethe error in pre-
dicting the weather next day. The goal is achieved when the agent finds the best of the models that
can be expressed with its language. This way, however, trust is placed onto utility as arealistic
model of model quality. For example, we may assume the utility to be the mean square error:
UnYsi - "(y; - y(x:))?, for n test instances (y1,Xy) ,...,{Yn, X,y that have the true value of y;, which can be
predicted from x; as y(x;).

Whiletheidentification approach strivesto explain the nature with a specific language, reducing
datainto special cases of particular universal truths, the approximation approach is sceptical about
thevalidity of the language. Of course, agood enough model can be found in thelanguage, but per-
haps there is another language that would work even better. An old joke says: The approximating
engineer thinks that equations approximate the reality, while the identifying physicist thinks that the
reality approximates the equations.

3.2. PROBABILITY: FREQUENCY VSBELIEF

In many circumstancesit isimpossible to predict the outcomes exactly. | take acoin and tossit, but
evenif | try, | cannot perfectly control the outcome. If it is not possible to reliably predict the out-
come, we can still reliably predict the probability of each outcome. For example, we could say that
there is a50% probability of the coin falling heads, and a 50% probability of the coin falling tails.

There are numerous interpretations of the meaning of probability, but a particularly important
divisionisinto thefrequentist probability on one hand and the interpretation of probability asade-
gree of belief on the other hand. Objective frequentist probabilities are a part of the ontology, and
they refer toreality. On the other hand, subjective beliefs arise from agent's limited knowledge about
the world, and are an aspect of epistemology. The worldview with frequentist probability takesthe
reality asinherently unpredictable, but guided by atrue model. Thetrue model isidentifiable, should
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aninfinite number of observations be made. Probability isdefined through thelong-run frequency of
an event. Learning is referred to as estimation, and seeks to minimize the fixed utility or risk.

On the other hand, the subjective view considers probabilities as resulting from the lack of
knowledge. The coin toss, for example, appears random purely because the conditions of each ex-
periment are not precisely controlled. Learning is referred to as inference. The probability is thus
seen just as away of representing the degree of belief, the ignorance, the inability or reluctance to
state adeterministic model. The subjective probability refersto statementsin alanguage, not to ob-
jectsin the world. It isthe model that is unable to predict the outcome, perhaps due to agent's bad
eyes or thick fingers, not the inherent unpredictability of the reality. An ideal observer with all the
information would be ableto get amodel with lessuncertainty. A subjectiveinterpretation of anun-
predictable quantum phenomenon isthat we do not know what isinside, not that theinsideisinher-
ently unknowable. The process of learning seeksto maximizethe utility of themodel, but the utility
and the probability are dependent and inherently entangled (Rubin, 1987). It ispossible, however, to
use proper score functions and objective algorithms that favor probabilities that are calibrated and
have good properties with respect to the frequentist criteria.

3.3. SIMPLICITY VSTIMIDITY

The simplicity-driven algorithm restricts itself to a smple language and then seeks the best
model from the language, in the process of fitting or optimization. It is a good practice to assess
whether the model issignificantly better than another simpler model. Itisalso possibleto reversethe
process. we first identify the best model, and then seek to simplify it in the process of pruning
(Breimanet al., 1984). Inal, ssmplicity-driven algorithmsrestrict the language or hide the data, and
then maximize the performance.

Thegrand majority of scientists pursue simplicity. Namely, thegoal of learningisnot just to pre-
dict but also to understand. A simple explanatory model of apreviously complicated phenomenonis
the epitome of science. When the model appears too comple, it iscritiqued and disliked: the sim-
plicity hasan inherent quality toit, aquality that does not derive from the objective precision of the
model. Instead, simplicity impliesthat the model iseasier to learn, keep in mind, work with, easier
to present on aslide, easier to persuade peopleinto it, and easier to validate.

On the other hand, the timidity-driven approach tries to identify the model that agrees with the
data but that achieves the highest utility in the worst case. For example, we examine the data and
estimate particular statistics, such as the mean and the standard deviation. Now, what model with
such amean and such a standard deviation is the most timid in the sense that it will be worst-case
optimal according to some utility function? The most timid oneisthe bell-curved Gaussian distribu-
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tion. If our constraints are the upper and the lower limit, the most timid model isthe uniform distri-
bution. Generally, the constraints imposed upon the model ascertain that the model agrees with the
data. But from all agreeable models, we pick the least pretentious one of them, which aso has the
property of worst-case optimality. Generalizations of thisview are the maximum entropy (MaxEnt)
methods (Jaynes, 2003). Another interpretation isthat the maximum entropy model isthe most "set-
tled-down' model that the constraintsallow, aview that resonateswell with the organic view of Fig-
ure 2.

3.4. SELECTION VSCOMBINATION

There may be multiple modelswithin asingle language that are all consistent with the data. The set
of consistent modelsisreferred to asthe version space (Mitchell, 1997). There are two approaches
for resolving thisissue: model selection and model combination. Model selection seeksto identify
the single best model. Model combination instead views the identity of the model as a nuisance pa-
rameter: no model iscorrect, but we can assign each model aweight accordant with its performance.
It must be stressed that we are not selecting actions. Instead, we are selecting models, and the se-
lected model will be used to select actions.

There are very many model selection criteria. For example, Fisher's maximum likelihood princi-
ple (Fisher, 1912) suggests picking the single most likely model, regardless of anything else. Hy-
pothesis testing in statistics selects a particular null model unless there is overwhelming evidence
against it. The Bayesian priors(Bernardo & Smith, 2000) set up acoherent set of preferencesamong
models that are combined with the models likelihoods. Ockham's parsimony principle prefers the
simplest among several equally useful models. The maximum entropy approach (Jaynes, 2003) pre-
fersthe “flattest' and most symmetric model with the highest Shannon entropy of all those that sat-
isfy the constraints derived from the data. Akaikeinformation criterion (A1C) (Akaike, 1973) penal-
izesthe utility with the number of parameters. The minimum description length principle (Rissanen,
1986) represents the complexity of the model with the same unit of measurement as the utility.

An example of the application of model selection is shown in Table 3. There are four models:
NBC, PIG, NIG and BS. These four models are applied to several data sets, and the one that
achieved the lowest loss (loss is the opposite of utility) is typeset in bold. It can be seen that the
model NBC very often achievesthe best performance. Only in afew situations BS performs better.
Overall, however, NBC would be selected as "the best'.

NBC PIG NIG BS
lung 0.230 0.208 0.247 0.243
soy-small  0.016 0.016 0.016 0.016
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Z0Oo
lymph
wine
glass
breast
ecoli
horse-c
voting
monk3
monk1
monk?2

0.018
0.079
0.010
0.070
0.212
0.032
0.108
0.089
0.042
0.175
0.226

0.019
0.094
0.010
0.071
0.242
0.033
0.127
0.098
0.027
0.012
0.223

0.018
0.077
0.015
0.071
0.212
0.039
0.106
0.089
0.042
0.176
0.224

0.018
0.075
0.014
0.073
0.221
0.046
0.104
0.063
0.027
0.012
0.226

Table 3: Model selection. Thelosses (negative utilities) suffered by different modelling methods (NBC, PIG, NIG, BS)
are not consistent across data sets. For each row we can sel ect the one of the best methods, typeset in bold, for that par-
ticular data set. It is difficult, however, to choose a single best method overal.
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Sometimes, however, the choiceisambiguous: the problemisillustrated in Figure 3: two mod-
els A and B were tested over alarge number of experiments in two contexts. For each experiment,
the utility of model B was subtracted from the utility of model A.
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Figure 3: Replicated comparisons. We can comparethe utility of two modelsover severa experiments. Sometimesitis
easy (top), and sometimes hard (bottom) to decide which model is better, A or B.

Inthefirst case (top), the model B achieved higher utility than model A amost always. However,
inasmall number of situations A was better. In the second case (bottom), deciding which model is
better becomesavery difficult problem: inthe most frequent case (mode), B was better; for the aver-
age utility over all experiments, A was better; in the average case (median), B was better; in the best
case, A was better; at the worst, B was not as bad. What to do? Deciding between two models may
be ambiguous even when the consistent and quantitative utilitiesare given in full detail. Of course,
such adilemmaonly arises when the methods are similar in performance, and any choice might be
fine.

Epicurus principle of indifference states (Kirchherr et al., 1997): Keep all hypotheses that are
consistent with the facts. Therefore, instead of making an arbitrary selection, one could perform a
combination. Consistency is not abinary decision: in aprobabilistic context several modelshave a
non-zero posterior probability, meaning that they are all consistent, to some extent. Namely, if we
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seethreetornadoesin the same week, it might be dueto the expected pattern with global warming or
simply dueto acoincidence without global warming. The Bayesian solution to thisproblemisbased
upon an ensemble of multiple models, with each model having non-zero likelihood. In our example,
we would consider both global warming and no global warming as being true to some extent. The
term commonly used for the ensemble is the posterior distribution over the models, but the whole
ensemble itself isreally asingle model, composed of submodels.

Let us consider the familiar example of the coin toss. There are numerous languages that can
formalize our knowledge about the coin. One language viewsthe coin as guided by some frequentist
probability: the greater the probability of the coinfalling heads, thelarger the frequency of the heads
in the final tally. A model from this language is referred to as the Bernoulli model. We start with
some prior belief about the coin's probability: the coin may be biased, or unbiased.
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Figure 4: A Bayesian ensemble of models. Each probability of the unknown coin falling heads is an individual
submodel, and these submodels form an ensemble. Each submodel is assigned a particular belief. Our prior belief is
uniform over all the probabilities. Successive observations of coin toss outcomes induce greater and greater precision
in our beliefs about the posterior probability (Ieft to right). Still, there is always some uncertainty about the exact
probability.

We can represent this belief by saying that our prior is an ensemble of all possible Bernoulli
submodels, and our belief in each submodel isequal (Figure 4, left panel). Then wetossthe coinfive
times, and the tally is 3 tails and 2 heads. The resulting ensemble reflects this (Figure 4, middle
panel): those probabilitiesthat indicate that the coin alwaysfalls heads areimpossible, and the most
likely is the submodel that claims that the probability of heads is 2/5. The data has narrowed the
range of our beliefs about the probability. It would be improper, however, to claim that thissingle
submodel is representative of the coin: we have not seen enough datato be so specific. All we can
say isthat we believe that the probability of headsisintheinterval [0.1,0.8]. Performing afew more

tosses, we end up with the tally of 9 heads and 10 tails. The distribution of our beliefs over the en-
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semble ( Figure 4, right panel) showsthat the probability isamost certainly somewhereon[0.2,0.8],
but we cannot yet say anything beyond that with compl ete certainty.

When such an ensembleis used to make a prediction, each submodel makes adistinct prediction.
Thisway, we obtain an ensembl e of predictions, each of them weighted by the posterior probability
of the corresponding submodel. We can interpret the ensembl e as an imprecise prediction: not just
that the ensemble is not sure about the outcome, it is aso unsure about the probability. The other
way of interpreting the ensemble is by stating that the true submodel is a nuisance parameter, a
property that exists but we do not want to know. The Bayesian approach for dealing with nuisance
parametersisto average the predictionsof all submodels, so that each prediction isweighted by our
belief in the submodel that made it.

If we consider the submodel as a nuisance parameter, we need not treat the model as an ensem-
ble: itissomewhat expensiveto lug along all the submodelsand their individual worths. Instead, we
may average them together. In this case, we can represent the average as a single model being
guided by the following probability:

o hy+l
Prsr = N, +n; +2

Thisisreferred to asthe Laplace estimate of probability, because the legend says that L aplace

wondered about the probability of seeing another sunrise after having seen only a single one.

Of course, in some applicationsit isimportant to keep note of the whole ensemble: pyae" isiden-
tical for thetally of 1 head and 1 tailsand for thetally of 10000 heads and 10000 tails. However, the
ensembleismuch moredistinctly peaked for the latter one. Averaging, therefore, isaway of replac-
ing the Epicurean ensemblewith asingle submodel that is closest to the average of the ensemble, but
any single submodel from the ensemble does not faithfully represent the variation in the ensemble.
Thereisan old statistician's joke: The average European has one testicle and one ovary.

3.5. BIASVSVARIANCE

Would you believe meif | told you that all ravensare black after seeing five of them?In every case,
the agent isrestricted to the data set. The agent seeks the elusive goal of generalization (Wolpert,
1995): the model should be applicable to data that has not been used when building the model, the
model should be the best on the datathat was not yet seen. Thisproblemishighly problematic: what
can we know about the data we have not seen?
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The cross-validation approach (Stone, 1974) dividesthe datainto two parts: one part isused for
building the model, and the second part for evaluating its utility; thisway we prevent the model from
simply memorizing theinstancesand “peeking at the correct answers. Weareinterested in the agent
generalizing, not memorizing. Thus, we evaluate the agent's predi ctions on thoseinstancesthat it has
not seen during learning of the model. Thisway, the validated utility will reflect the mistakes of gen-
eralization. The idea underlying the cross-validation isthat areliable model will be able to show a
consistent gain in utility with incomplete data. By induction, we then expect that a model that
achieved reliable performance with apart of the given datawill aso not missthetarget on thefuture
truly unseen data.

The hidden nuisance parameter in cross-validation is how much datawe use for training. This
decisionisfar from arbitrary, aswewill now show using learning curves (Kadie, 1995). A learning
curve showsthe rel ationship between the performance of amodel on unseen data depending on how
much datawas used for training. If the utility nolonger changes, the model has converged, and addi-
tional dataislesslikely to affect the model.
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Figure 5: The learning curves. Most models become better with an increasing number of instances. Some of them
quickly reach aplateau and result inreliable utility. Otherstake more chances, and reach greater levelsof utility, but pay
acost in reliability.
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In Figure 5we compare two commonly used al gorithmsin machinelearning, the naive Bayesian
classifier (NBC), and the C4.5 classifier (Quinlan, 1993). The utility is not simple to characterize
when there is little data (Iess than 50 instances), but NBC is less robust than C4.5. When there is
more data (50-150), it is still difficult to compare both methods. Beyond 150 instances, NBC be-
comesreliable: we know that the NBC model requires approximately 150 instancesto be character-
ized amost unambiguously. On the other hand, C4.5 keeps gaining utility indefinitely. Therefore,
two conclusions can be made: the NBC model issimple enough to beidentified unambiguously from
300 instances; thisis agood result, as there are 960 instances in that data set. And, when there are
250 instances, the C4.5 model has not yet fully converged, but it is already clear that it is consis-
tently better than the NBC model.

Still, thereisthe problem of which method to choose: C4.5 has higher average utility, but NBC
has lower variance in its utility. This trade off isreferred to as the bias/variance dilemma (Geman
et a., 1992). When we want to be sure about the performance, in cases when any mistake would be
dangerous, a method with lower variance is preferable. When, however, we can afford to take
chances, the method with lower biasis going to be preferable, in spite of the possible variance. The
choice of the model, hence, depends on how risk-averseweare. It isclear, though, that the generali-
zation performance still depends on the sample being unbiased representative: when one wants to
predict the outcome of the elections, one should ask the people that will actually vote, and even
these should not be all aging golf players but instead arepresentative sample of the whole population
(that will vote). No cross-validation on the population of aging golf playerswill reveal thetrue pref-
erences of the general population. Also, problems occur both with learning curvesand crossvalida-
tion when there are very few instances. then neither the convergence nor the average utility can be
reliably assessed.

Thereisan important connection between simplicity and variance. It isoften thought that smple
models have lower variance, but it would be mistaken to assume that this connection is causal or
rigid. Whether acomplex language will yield model swith high variance depends upon the prior as-
sumptions and on the algorithm. Seemingly complex models often have low variance (Breiman,
1996).

3.6. BAYESIANSVSFREQUENTISTS

A common dilemma in statistics is between the opponents and endorsers of the Bayesian ap-
proach. We will now present their caricatures. For afrequentist, there are multiple data sets consis-
tent with agiven model: their probabilities are about the data, and their model isbelieved to betrue.
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For aBayesian, there are many modelsin the language that are consistent with aparticular piece of
data: each model has a specific belief, but their data is assumed to have the probability of 1.

Bayesians are uncertain about the model, but assume certainty about the data. To get rid of the
uncertainty, they average out the model. To demonstrate the uncertainty, they perturb the choice of
the model given adataset, and examineif the ensemble can befaithfully represented by amodel se-
lection or amodel average. Bayesians tend to be driven by languages and data: they focus on the
construction of languages to model data. Their priors are the explicit gold standard, and the algo-
rithms they use are centered on the properties of the priors and the data. In fact, with the scheme of
Figure 2, their algorithmisreally the prior.

Frequentists are uncertain about the data, but assume certainty about the model. To demonstrate
the uncertainty, they perturb the data given amodel. To get rid of the uncertainty about the model,
they vary the data, and select the best model of a particular language for the data. For different
choicesand sizes of the data, they compare thelanguages on the bias-variance axis. If thevarianceis
too high, they average over the sel ections. Frequentiststend to be driven by utilitiesand algorithms:
they focus on the construction of algorithms to maximize utilities. They rarely question their lan-
guage (which is usually very flexible), and their prior assumptions are hidden in the choice of the
algorithms.

Because the assumptions are different, attemptsto reconcile these approaches are difficult. Fre-
guentistsfinditillogical that a photon detector would have "beliefs about the outcomes. Bayesians
would respond that there may be laws in the nature, but all we can do isto have beliefs about them.
Ontheother hand, Bayesiansfinditillogical for afrequentist to say that thereisaprobability inthe
world that rules the outcome of a coin toss. Frequentists would respond that the probability would
arise if such experiment was repeated in identical circumstancesinfinitely many times, or through
Everett's many-worlds interpretation of probability (Everett, 1957).

To befair, most frequentistsin statistics do not think in such away: most statisticianstend to be
epistemol ogical in spirit, and true frequentists may be found among the ontol ogically-minded physi-
cists. The statisticiansthat do not call themselves frequentists but non-Bayesians pragmatically pre-
fer to work with the algorithms and the utilities, rather than to work indirectly through languages,
like Bayesians. And most Bayesianstoo are pragmatic and concerned about various utility functions
and algorithms. Still, there are attempts to reconcile the results if not their interpretations (Berger,
2003). It isimportant, however, to see that beliefs and probabilities can co-exist.
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4, SUBJECTIVE, INTERSUBJECTIVE AND OBJECTIVE

There is aso the dilemma of identification and approximation. It is clear that once the ontology is
fixed, and if the ontology includes probability, frequentist probability is an existent which we can
seek to estimate. But if the ontology isinternal and not external, one hasto include epistemol ogical

considerations with prior expectations and degrees of belief. The opponents of this approach argue
that the choice of the prior isinherently subjective. The Bayesians struggle to find "objective' lan-
guages and prior assumptions, onesthat carry little bias or preference for different models. An ex-
ample of such priors are the non-informative priors, ones that provide no information about the
choice of the model and reflect ignorance. It is easy to dismiss these attempts as “still subjective'.

The most common exampl e of an “objective' techniqueisthelinear regression model. It is next
to being fully automated: no human intervention is needed beyond preparing reliable, plentiful and
unbiased data. It has been used for numerous applications, often resulting in utility. It iswidely ac-
cepted and known. It istaught in schools. Many people understand linear modelsand can gain utility
from them. But this does not make linear regression objective. Itisjust aspecific model, based upon
many subjective assumptions. The very fact that we are assuming that alinear model can be usedto
represent reality isquite arbitrary. Nobody really believesthat the natureis solving linear equations.

Thekey difference, thereby, isthat “objective methods result in modelsthat aretransplantable,
multisubjective or intersubjective. I ntersubjective model s are sel f-sufficient and encapsul ated, they
areparticulars. Thisway, they can be communicated from one agent to another. Furthermore, trans-
plantable model s derive from shared preconceptions; they are guided by rulesthat are general. They
do not make use of the hidden implicit subjective assumptions, but only of those prior assumptions
that are shared by several agents. In summary, intersubjectivity means that amodel can be under-
stood and accepted by more than a single agent in acommunity. But intersubjective approaches are
still epistemol ogical, so ontologists do not find them objective.

Itisnot just that shared language (otherwise amodel could not be conveyed), shared data (oth-
erwisethemodel could not be verified), and shared algorithms (other the model could not be proved)
that matter: shared utilities matter too. Someone might understand my theory, but the question is
whether the other agent will appreciateit asmuch as| do. | might form an intersubjective and com-
prehensibletheory of why there arefive empty cups of coffee on my desk, but not many agentswill
care: my model of the five cups does not yield them any utility. In all, objective models arise from
data, algorithms, utilities and languages that are shared by the whole community. Sometimes, we
convey them explicitly (“Tomorrow is going to rain.”), and sometimes by conveying merely their
causes (new data, new rules of induction, new words in the language, new qualities and priorities).
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The four Aristotelian causes (data, algorithms, language, and utility) must be aligned for the
model to coalesce. Teaching is about varying one or two of the causes so that the learner can re-
adjust hisinternal model. If too many causesarevaried, if thereisno alignment, or if thereisimbal-
ance along any of the dichotomieslisted in the previous sections, the learner becomes confused and
lost. Therefore, it isdesirablefor only one of the causesto be varied during teaching. Communicat-
ing the dataisthe easiest of all causes. It may even turn out that the datais the only way of convey-
ing models: A theory is something nobody believes, except the person who made it. An experiment is
something everybody believes, except the person who made it.
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