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ABSTRACT 

A model is one of the most fundamental concepts: it is a formal and generalized explanation of a phenomenon. 
Only with models can we bridge the particulars and predict the unknown. Virtually all our intellectual work turns 
around finding models, evaluating models, using models. Because models are so pervasive, it makes sense to take 
a look at modelling itself. We will approach this problem, of course, by building a model of the process of model-
ling.  

1. AGENTS 

To discuss modelling, we will weave an imaginary universe containing both the modeller and nature, 
illustrated in  Figure 1. We will not use the computer metaphor, as it has been replaced by the meta-
phor of the autonomous agent over the past decades (Russell & Norvig, 1995). Of course, an 
autonomous agent is not a novel idea, and has much in common with other work that dates at least 
back to von Uexküll's work (Salthe, 2001). The autonomous agent is not a passive entity with input 
and output. Instead, an autonomous agent has a persistent existence through space and time: it can 
ignore the perceptions, and it does not need to act. 
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Figure 1: The intelligent agent. The universe contains an agent that perceives through its sensors, and acts through its 
effectors. The outside world is unknown, but not necessarily unknowable. 

The outside world is outside its reach except through the agent's sensors and effectors. Still, the 
autonomous agent may build a picture of the world inside itself, and the picture may include the 
agent itself, which we render with the small blob within the agent's model in Figure 1. This should 
not be seen as recursion, however: it is just an auto-portrait. Externalists feel more comfortable by 
assuming a world, as seen by a God or as represented by a certain model of objective reality, and 
placing the agent in the world; internalists prefer not to postulate such a model, so they first assume 
the agent, and then place the world inside it. Even if the differences in perspective are often over-
whelming, there are no major differences for modelling: in both cases there are sensors and effec-
tors.  

Inside the agent's mind we separate the model from the utility. The model roughly corresponds to 
the descriptive and the mental: the model seeks to represent the truth. The utility, however, corre-
sponds to the normative and the emotional: the utility chooses the desirable. This way, the sensors 
are not mapped directly to the actions, and the agent is not a mindless automaton. Instead, the agent 
learns a model of the reality, and chooses the action with the highest utility. Our concern in this text 
will be the learning. 

The agent is an existential system, so it is not completely free in its choices: if too many choices 
are wrong, the agent is prevented from making any more of them because it breaks down. Its curios-
ity, pursuit of truth, novelty and aesthetics might wish to allocate plenty of utility to building faith-
ful, novel and beautiful models. At the same time, the agent's body struggles to keep the agent alive 
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by restricting the freedom of its artistic and intellectual pursuits. In all, we may imagine a certain 
hierarchy of utilities inside the agent, similar to Maslow's hierarchy of needs. 

The role of the utility is to judge the actions. But actions are often judged by the utilities of their 
consequences, and the models are judged by the utilities of their actions' consequences, and the 
agents are judged by their models' actions' consequence utilities. Just as the agent has limited insight 
into the actuality of the nature, it also has a limited insight into the consequences of its actions. The 
agent does not know the consequences, but uses utility to make the decision. This way, utility should 
itself be seen as a model of the desirability of the consequences before the consequences actually 
occur. Even if the utility appears fixed, utility itself is subject to change and selection through the 
process of evolution. 

Moreover, the agent does not have full access to the actuality around it. It is restricted to the per-
cepts it can make out of the environment. The agents and their sensors were not selected through 
their ability to make beautiful, novel and faithful models, but primarily by how much these models 
helped them survive. Hence, the agent has limited insight into the fidelity of its perceptions. Never-
theless, from these perceptions, the agent constructs its reality, the model of actuality. 

2. MODELS 

Let us now focus on a particular problem. The agent has assembled a number of perceptions, and 
organized them formally in the form of instances. This is referred to as data or a data set. The ̀ data' 
is a necessarily internal representation of either internal or external measurements, samples or ob-
jects. An example of data is shown in Table 1. 

 

  stage subject particulars formaliza-
tion 

1 percepts     / 
2 representation data instances, examples Instances 

3 learning algo-
rithm 

heuristics, proce-
dures Programs 

4 knowledge model hypotheses, concepts Languages 

5 decision-
making actions utility, preferences Policies 

6 consequences     / 
 

Table 1: A model-producing factory. The agent has no direct control of or insight into the objective reality (before stage 
1), and no control of or knowledge about the consequences of its actions (after stage 6). 
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 The agent wonders whether the outcome of the coin toss can be predicted from the weather out-
side. Such ability would yield major utility in various gambling endeavors. 

Only the attribute Y is labelled, as the agent does not strive to predict the weather (it can easily 
be observed), only the outcome of the coin toss (which cannot be observed a priori). This already 
shows how the model is constrained by the nature of the agent's existence: if the agent's desire was 
the direct pursuit of truth, predicting the weather would be just as interesting as predicting the coin 
toss. What needs to be modelled is only what is not already known or cheaper to observe or verify 
directly.  

2.1. MECHANICAL MODELLING 

Table 2 attempts to summarize the flow of information from the percepts to the consequences within 
a specific agent.  

 
   the la-

bel 
   ↓ 

attributes → X Y 
an instance 

→
rain H 

an instance 
→

sunny H 

an instance 
→

sunny T 

. rain H 

. sunny T 

. sunny T 

. rain H 

. rain H 
 

Table 2: A non-deterministic data set. The weather is described with an unlabelled attribute X with the range ℜX = 
{rain, sunny}. The coin is modelled as a labelled attribute Y with the range ℜY = {H,T}. In general it is impossible to 
predict the coin toss from the weather, and there is not enough data to be truly certain in our ability to predict heads in 
rain. 

This conveyor belt is judged as a whole by the outside world. We can formalize different stages in 
the process. First, the percepts can be crystallized into the form of instances and examples. The algo-
rithms for building models are formalized as algorithms and procedures, and take the instances and 
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examples and operate on them to create models, seeking to maximize the quality of the model as as-
sessed by the utility. 

The model-in-progress is expressed in a specific language. This language differs from the notion 
of the natural language which is intended for communication between agents, but is the internal ̀ lan-
guage' in which the models are written. For example, a logically-minded agent would have a lan-
guage if  X=a  then  Y=b, where a is a particular value of the attribute X and b is a particular value of 
the labelled attribute Y. The agent could then create a model that says if  X=rain  then  Y=H. Of 
course, there are other languages for expressing models, such as mathematical expressions (y = a×x 
+ b), case-based inferences (if  X  like  a  then  Y  like  b), or non-causal inferences (X=a  with  Y=b). 
The agent employs these models to choose actions with good utility.  

2.2. ORGANIC DEVELOPMENT OF MODELS 

While the linear view expresses the creation of a model as a linear sequence of operations, the de-
velopmental view interprets the model as resulting from the interaction of four restraints acting upon 
it. These restraints can be formalized with the scheme in Figure 2. The model to be learned is con-
strained between four surrounding layers in an intersecting specification hierarchy (Salthe, 1993). 
Under these restraints, the model emerges organically. The restraints need not be fixed. On the scalar 
scale, the modelling is performed inside the agent. 

Utility, language, algorithm and data can be interpreted as Aristotelian causes of the model: the 
model cannot be independent of either of them. The algorithm is what is driving the construction of 
the model. The language is what the model is made of. The data is what defines the form of the 
model: obviously the model should be consistent with the empirical data. Finally, the model is going 
to be judged though the utility of the actions chosen by using the model.  
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Figure 2: The model develops under the pressure of constraints. The constraints are the Aristotelian causes: the 
capacity of the algorithm, the expressive power of the language, the quest for utility and the consistency with the 
data. 

3. DICHOTOMIES IN LEARNING 

There are numerous views of inductive learning and statistical inference. Machine learning is still an 
active field of research and there are different methodologies competing with one another. With a bit 
of emotional distance we see, however, that many of the competing approaches in fact approach the 
same problem, but from a different direction. Our description will briefly and simply touch upon 
several ideas in machine learning, artificial intelligence and statistics. The list should be seen as an 
opinionated snapshot, not as an exhaustive survey. 

3.1. IDENTIFICATION VS APPROXIMATION 

The Probably Approximately Correct (PAC) learning theory (Valiant, 1984) was concerned with 
problems of deductive identification. We assume that the data results from measurement of a spe-
cific but unknown concept that determines whether an instance is true or not. The concept itself is a 
statement in a particular language, and the task of learning is to identify the concept that yielded the 
instances. Valiant proved that the learning problem is tractable for several non-trivial concept lan-
guages, such as conjunctive and disjunctive normal form expressions. The criterion in this identifica-
tion approach is to arrive at the true definition of the concept. Here, our term ̀ identification' is to be 
distinguished from ̀ system identification', an approach to modelling which includes approximation. 

The utility is not needed because the language is trusted. The language is the ontology. Most sci-
entists believe that mathematics is the right language for modelling nature, for example. We often 
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like to think that our brain (as a kind of a language) is powerful enough to understand the truth of the 
universe. Many philosophers deem that the language of causal logic is sufficient for a complete de-
scription of how the universe evolves and revolves, and that everything can indeed be linked into an 
endless thread of chain and effect. 

Identification assumes that the agent's language matches the language of the concept. This is a 
strong assumption: we are rarely sure that our language as such can truly describe the reality! For 
that reason, the agnostic approach to learning (Haussler, 1992) no longer expects that the model will 
be true. The approximation approach no longer seeks truth, but only seeks to minimize the error that 
the model makes. The language is epistemology. For example, the agent will decide between using 
the barometer, the weather channel, or a combination of both in order to minimize the error in pre-
dicting the weather next day. The goal is achieved when the agent finds the best of the models that 
can be expressed with its language. This way, however, trust is placed onto utility as a realistic 
model of model quality. For example, we may assume the utility to be the mean square error:  
1/n∑i = 1

n(yi - y(xi))2, for n test instances 〈y1,x1〉 ,...,〈yn,xn〉 that have the true value of yi, which can be 
predicted from xi as y(xi). 

While the identification approach strives to explain the nature with a specific language, reducing 
data into special cases of particular universal truths, the approximation approach is sceptical about 
the validity of the language. Of course, a good enough model can be found in the language, but per-
haps there is another language that would work even better. An old joke says: The approximating 
engineer thinks that equations approximate the reality, while the identifying physicist thinks that the 
reality approximates the equations.

3.2. PROBABILITY: FREQUENCY VS BELIEF 

In many circumstances it is impossible to predict the outcomes exactly. I take a coin and toss it, but 
even if I try, I cannot perfectly control the outcome. If it is not possible to reliably predict the out-
come, we can still reliably predict the probability of each outcome. For example, we could say that 
there is a 50% probability of the coin falling heads, and a 50% probability of the coin falling tails. 

There are numerous interpretations of the meaning of probability, but a particularly important 
division is into the frequentist probability on one hand and the interpretation of probability as a de-
gree of belief on the other hand. Objective frequentist probabilities are a part of the ontology, and 
they refer to reality. On the other hand, subjective beliefs arise from agent's limited knowledge about 
the world, and are an aspect of epistemology. The worldview with frequentist probability takes the 
reality as inherently unpredictable, but guided by a true model. The true model is identifiable, should 
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an infinite number of observations be made. Probability is defined through the long-run frequency of 
an event. Learning is referred to as estimation, and seeks to minimize the fixed utility or risk. 

On the other hand, the subjective view considers probabilities as resulting from the lack of 
knowledge. The coin toss, for example, appears random purely because the conditions of each ex-
periment are not precisely controlled. Learning is referred to as inference. The probability is thus 
seen just as a way of representing the degree of belief, the ignorance, the inability or reluctance to 
state a deterministic model. The subjective probability refers to statements in a language, not to ob-
jects in the world. It is the model that is unable to predict the outcome, perhaps due to agent's bad 
eyes or thick fingers, not the inherent unpredictability of the reality. An ideal observer with all the 
information would be able to get a model with less uncertainty. A subjective interpretation of an un-
predictable quantum phenomenon is that we do not know what is inside, not that the inside is inher-
ently unknowable. The process of learning seeks to maximize the utility of the model, but the utility 
and the probability are dependent and inherently entangled (Rubin, 1987). It is possible, however, to 
use proper score functions and objective algorithms that favor probabilities that are calibrated and 
have good properties with respect to the frequentist criteria. 

3.3. SIMPLICITY VS TIMIDITY 

The simplicity-driven algorithm restricts itself to a simple language and then seeks the best 
model from the language, in the process of fitting or optimization. It is a good practice to assess 
whether the model is significantly better than another simpler model. It is also possible to reverse the 
process: we first identify the best model, and then seek to simplify it in the process of pruning 
(Breiman et al., 1984). In all, simplicity-driven algorithms restrict the language or hide the data, and 
then maximize the performance. 

The grand majority of scientists pursue simplicity. Namely, the goal of learning is not just to pre-
dict but also to understand. A simple explanatory model of a previously complicated phenomenon is 
the epitome of science. When the model appears too complex, it is critiqued and disliked: the sim-
plicity has an inherent quality to it, a quality that does not derive from the objective precision of the 
model. Instead, simplicity implies that the model is easier to learn, keep in mind, work with, easier 
to present on a slide, easier to persuade people into it, and easier to validate. 

On the other hand, the timidity-driven approach tries to identify the model that agrees with the 
data but that achieves the highest utility in the worst case. For example, we examine the data and 
estimate particular statistics, such as the mean and the standard deviation. Now, what model with 
such a mean and such a standard deviation is the most timid in the sense that it will be worst-case 
optimal according to some utility function? The most timid one is the bell-curved Gaussian distribu-
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tion. If our constraints are the upper and the lower limit, the most timid model is the uniform distri-
bution. Generally, the constraints imposed upon the model ascertain that the model agrees with the 
data. But from all agreeable models, we pick the least pretentious one of them, which also has the 
property of worst-case optimality. Generalizations of this view are the maximum entropy (MaxEnt) 
methods (Jaynes, 2003). Another interpretation is that the maximum entropy model is the most ̀ set-
tled-down' model that the constraints allow, a view that resonates well with the organic view of Fig-
ure 2. 

3.4. SELECTION VS COMBINATION 

There may be multiple models within a single language that are all consistent with the data. The set 
of consistent models is referred to as the version space (Mitchell, 1997). There are two approaches 
for resolving this issue: model selection and model combination. Model selection seeks to identify 
the single best model. Model combination instead views the identity of the model as a nuisance pa-
rameter: no model is correct, but we can assign each model a weight accordant with its performance. 
It must be stressed that we are not selecting actions. Instead, we are selecting models, and the se-
lected model will be used to select actions. 

There are very many model selection criteria. For example, Fisher's maximum likelihood princi-
ple (Fisher, 1912) suggests picking the single most likely model, regardless of anything else. Hy-
pothesis testing in statistics selects a particular null model unless there is overwhelming evidence 
against it. The Bayesian priors (Bernardo & Smith, 2000) set up a coherent set of preferences among 
models that are combined with the models' likelihoods. Ockham's parsimony principle prefers the 
simplest among several equally useful models. The maximum entropy approach (Jaynes, 2003) pre-
fers the `flattest' and most symmetric model with the highest Shannon entropy of all those that sat-
isfy the constraints derived from the data. Akaike information criterion (AIC) (Akaike, 1973) penal-
izes the utility with the number of parameters. The minimum description length principle (Rissanen, 
1986) represents the complexity of the model with the same unit of measurement as the utility.  

An example of the application of model selection is shown in Table 3. There are four models: 
NBC, PIG, NIG and BS. These four models are applied to several data sets, and the one that 
achieved the lowest loss (loss is the opposite of utility) is typeset in bold. It can be seen that the 
model NBC very often achieves the best performance. Only in a few situations BS performs better. 
Overall, however, NBC would be selected as `the best'. 
 

  NBC PIG NIG BS 
lung 0.230 0.208 0.247 0.243

soy-small 0.016 0.016 0.016 0.016
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zoo 0.018 0.019 0.018 0.018
lymph 0.079 0.094 0.077 0.075
wine 0.010 0.010 0.015 0.014
glass 0.070 0.071 0.071 0.073
breast 0.212 0.242 0.212 0.221
ecoli 0.032 0.033 0.039 0.046

horse-c 0.108 0.127 0.106 0.104
voting 0.089 0.098 0.089 0.063
monk3 0.042 0.027 0.042 0.027
monk1 0.175 0.012 0.176 0.012
monk2 0.226 0.223 0.224 0.226

 

Table 3: Model selection. The losses (negative utilities) suffered by different modelling methods (NBC, PIG, NIG, BS) 
are not consistent across data sets. For each row we can select the one of the best methods, typeset in bold, for that par-
ticular data set. It is difficult, however, to choose a single best method overall. 
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Sometimes, however, the choice is ambiguous: the problem is illustrated in  Figure 3: two mod-
els A and B were tested over a large number of experiments in two contexts. For each experiment, 
the utility of model B was subtracted from the utility of model A.  

 

 
 

Figure 3: Replicated comparisons. We can compare the utility of two models over several experiments. Sometimes it is 
easy (top), and sometimes hard (bottom) to decide which model is better, A or B. 

In the first case (top), the model B achieved higher utility than model A almost always. However, 
in a small number of situations A was better. In the second case (bottom), deciding which model is 
better becomes a very difficult problem: in the most frequent case (mode), B was better; for the aver-
age utility over all experiments, A was better; in the average case (median), B was better; in the best 
case, A was better; at the worst, B was not as bad. What to do? Deciding between two models may 
be ambiguous even when the consistent and quantitative utilities are given in full detail. Of course, 
such a dilemma only arises when the methods are similar in performance, and any choice might be 
fine.  

Epicurus' principle of indifference states (Kirchherr et al., 1997): Keep all hypotheses that are 
consistent with the facts. Therefore, instead of making an arbitrary selection, one could perform a 
combination. Consistency is not a binary decision: in a probabilistic context several models have a 
non-zero posterior probability, meaning that they are all consistent, to some extent. Namely, if we 
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see three tornadoes in the same week, it might be due to the expected pattern with global warming or 
simply due to a coincidence without global warming. The Bayesian solution to this problem is based 
upon an ensemble of multiple models, with each model having non-zero likelihood. In our example, 
we would consider both global warming and no global warming as being true to some extent. The 
term commonly used for the ensemble is the posterior distribution over the models, but the whole 
ensemble itself is really a single model, composed of submodels. 

Let us consider the familiar example of the coin toss. There are numerous languages that can 
formalize our knowledge about the coin. One language views the coin as guided by some frequentist 
probability: the greater the probability of the coin falling heads, the larger the frequency of the heads 
in the final tally. A model from this language is referred to as the Bernoulli model. We start with 
some prior belief about the coin's probability: the coin may be biased, or unbiased.  

 

 
Figure 4: A Bayesian ensemble of models. Each probability of the unknown coin falling heads is an individual 
submodel, and these submodels form an ensemble. Each submodel is assigned a particular belief. Our prior belief is 
uniform over all the probabilities. Successive observations of coin toss outcomes induce greater and greater precision 
in our beliefs about the posterior probability (left to right). Still, there is always some uncertainty about the exact 
probability.  

We can represent this belief by saying that our prior is an ensemble of all possible Bernoulli 
submodels, and our belief in each submodel is equal (Figure 4, left panel). Then we toss the coin five 
times, and the tally is 3 tails and 2 heads. The resulting ensemble reflects this (Figure 4, middle 
panel): those probabilities that indicate that the coin always falls heads are impossible, and the most 
likely is the submodel that claims that the probability of heads is 2/5. The data has narrowed the 
range of our beliefs about the probability. It would be improper, however, to claim that this single 
submodel is representative of the coin: we have not seen enough data to be so specific. All we can 
say is that we believe that the probability of heads is in the interval [0.1,0.8]. Performing a few more 
tosses, we end up with the tally of 9 heads and 10 tails. The distribution of our beliefs over the en-
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semble ( Figure 4, right panel) shows that the probability is almost certainly somewhere on [0.2,0.8], 
but we cannot yet say anything beyond that with complete certainty. 

When such an ensemble is used to make a prediction, each submodel makes a distinct prediction. 
This way, we obtain an ensemble of predictions, each of them weighted by the posterior probability 
of the corresponding submodel. We can interpret the ensemble as an imprecise prediction: not just 
that the ensemble is not sure about the outcome, it is also unsure about the probability. The other 
way of interpreting the ensemble is by stating that the true submodel is a nuisance parameter, a 
property that exists but we do not want to know. The Bayesian approach for dealing with nuisance 
parameters is to average the predictions of all submodels, so that each prediction is weighted by our 
belief in the submodel that made it. 

If we consider the submodel as a nuisance parameter, we need not treat the model as an ensem-
ble: it is somewhat expensive to lug along all the submodels and their individual worths. Instead, we 
may average them together. In this case, we can represent the average as a single model being 
guided by the following probability:  

2
1
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+
=
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MAP nn
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This is referred to as the Laplace estimate of probability, because the legend says that Laplace 
wondered about the probability of seeing another sunrise after having seen only a single one.  

Of course, in some applications it is important to keep note of the whole ensemble: pMAP
H is iden-

tical for the tally of 1 head and 1 tails and for the tally of 10000 heads and 10000 tails. However, the 
ensemble is much more distinctly peaked for the latter one. Averaging, therefore, is a way of replac-
ing the Epicurean ensemble with a single submodel that is closest to the average of the ensemble, but 
any single submodel from the ensemble does not faithfully represent the variation in the ensemble. 
There is an old statistician's joke: The average European has one testicle and one ovary.  
 

3.5. BIAS VS VARIANCE 

Would you believe me if I told you that all ravens are black after seeing five of them? In every case, 
the agent is restricted to the data set. The agent seeks the elusive goal of generalization (Wolpert, 
1995): the model should be applicable to data that has not been used when building the model, the 
model should be the best on the data that was not yet seen. This problem is highly problematic: what 
can we know about the data we have not seen? 
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The cross-validation approach (Stone, 1974) divides the data into two parts: one part is used for 
building the model, and the second part for evaluating its utility; this way we prevent the model from 
simply memorizing the instances and ̀ peeking at the correct answers'. We are interested in the agent 
generalizing, not memorizing. Thus, we evaluate the agent's predictions on those instances that it has 
not seen during learning of the model. This way, the validated utility will reflect the mistakes of gen-
eralization. The idea underlying the cross-validation is that a reliable model will be able to show a 
consistent gain in utility with incomplete data. By induction, we then expect that a model that 
achieved reliable performance with a part of the given data will also not miss the target on the future 
truly unseen data.  

The hidden nuisance parameter in cross-validation is how much data we use for training. This 
decision is far from arbitrary, as we will now show using learning curves (Kadie, 1995). A learning 
curve shows the relationship between the performance of a model on unseen data depending on how 
much data was used for training. If the utility no longer changes, the model has converged, and addi-
tional data is less likely to affect the model.  

 
 

Figure 5: The learning curves. Most models become better with an increasing number of instances. Some of them 
quickly reach a plateau and result in reliable utility. Others take more chances, and reach greater levels of utility, but pay 
a cost in reliability. 
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In  Figure 5 we compare two commonly used algorithms in machine learning, the naive Bayesian 
classifier (NBC), and the C4.5 classifier (Quinlan, 1993). The utility is not simple to characterize 
when there is little data (less than 50 instances), but NBC is less robust than C4.5. When there is 
more data (50-150), it is still difficult to compare both methods. Beyond 150 instances, NBC be-
comes reliable: we know that the NBC model requires approximately 150 instances to be character-
ized almost unambiguously. On the other hand, C4.5 keeps gaining utility indefinitely. Therefore, 
two conclusions can be made: the NBC model is simple enough to be identified unambiguously from 
300 instances; this is a good result, as there are 960 instances in that data set. And, when there are 
250 instances, the C4.5 model has not yet fully converged, but it is already clear that it is consis-
tently better than the NBC model. 

Still, there is the problem of which method to choose: C4.5 has higher average utility, but NBC 
has lower variance in its utility. This trade off is referred to as the bias/variance dilemma (Geman 
et al., 1992). When we want to be sure about the performance, in cases when any mistake would be 
dangerous, a method with lower variance is preferable. When, however, we can afford to take 
chances, the method with lower bias is going to be preferable, in spite of the possible variance. The 
choice of the model, hence, depends on how risk-averse we are. It is clear, though, that the generali-
zation performance still depends on the sample being unbiased representative: when one wants to 
predict the outcome of the elections, one should ask the people that will actually vote, and even 
these should not be all aging golf players but instead a representative sample of the whole population 
(that will vote). No cross-validation on the population of aging golf players will reveal the true pref-
erences of the general population. Also, problems occur both with learning curves and cross valida-
tion when there are very few instances: then neither the convergence nor the average utility can be 
reliably assessed. 

There is an important connection between simplicity and variance. It is often thought that simple 
models have lower variance, but it would be mistaken to assume that this connection is causal or 
rigid. Whether a complex language will yield models with high variance depends upon the prior as-
sumptions and on the algorithm. Seemingly complex models often have low variance (Breiman, 
1996). 

3.6. BAYESIANS VS FREQUENTISTS 

A common dilemma in statistics is between the opponents and endorsers of the Bayesian ap-
proach. We will now present their caricatures. For a frequentist, there are multiple data sets consis-
tent with a given model: their probabilities are about the data, and their model is believed to be true. 
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For a Bayesian, there are many models in the language that are consistent with a particular piece of 
data: each model has a specific belief, but their data is assumed to have the probability of 1. 

Bayesians are uncertain about the model, but assume certainty about the data. To get rid of the 
uncertainty, they average out the model. To demonstrate the uncertainty, they perturb the choice of 
the model given a data set, and examine if the ensemble can be faithfully represented by a model se-
lection or a model average. Bayesians tend to be driven by languages and data: they focus on the 
construction of languages to model data. Their priors are the explicit gold standard, and the algo-
rithms they use are centered on the properties of the priors and the data. In fact, with the scheme of  
Figure 2, their algorithm is really the prior. 

Frequentists are uncertain about the data, but assume certainty about the model. To demonstrate 
the uncertainty, they perturb the data given a model. To get rid of the uncertainty about the model, 
they vary the data, and select the best model of a particular language for the data. For different 
choices and sizes of the data, they compare the languages on the bias-variance axis. If the variance is 
too high, they average over the selections. Frequentists tend to be driven by utilities and algorithms: 
they focus on the construction of algorithms to maximize utilities. They rarely question their lan-
guage (which is usually very flexible), and their prior assumptions are hidden in the choice of the 
algorithms. 

Because the assumptions are different, attempts to reconcile these approaches are difficult. Fre-
quentists find it illogical that a photon detector would have ̀ beliefs' about the outcomes. Bayesians 
would respond that there may be laws in the nature, but all we can do is to have beliefs about them. 
On the other hand, Bayesians find it illogical for a frequentist to say that there is a probability in the 
world that rules the outcome of a coin toss. Frequentists would respond that the probability would 
arise if such experiment was repeated in identical circumstances infinitely many times, or through 
Everett's many-worlds interpretation of probability (Everett, 1957). 

To be fair, most frequentists in statistics do not think in such a way: most statisticians tend to be 
epistemological in spirit, and true frequentists may be found among the ontologically-minded physi-
cists. The statisticians that do not call themselves frequentists but non-Bayesians pragmatically pre-
fer to work with the algorithms and the utilities, rather than to work indirectly through languages, 
like Bayesians. And most Bayesians too are pragmatic and concerned about various utility functions 
and algorithms. Still, there are attempts to reconcile the results if not their interpretations (Berger, 
2003). It is important, however, to see that beliefs and probabilities can co-exist. 
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4. SUBJECTIVE, INTERSUBJECTIVE AND OBJECTIVE 

There is also the dilemma of identification and approximation. It is clear that once the ontology is 
fixed, and if the ontology includes probability, frequentist probability is an existent which we can 
seek to estimate. But if the ontology is internal and not external, one has to include epistemological 
considerations with prior expectations and degrees of belief. The opponents of this approach argue 
that the choice of the prior is inherently subjective. The Bayesians struggle to find `objective' lan-
guages and prior assumptions, ones that carry little bias or preference for different models. An ex-
ample of such priors are the non-informative priors, ones that provide no information about the 
choice of the model and reflect ignorance. It is easy to dismiss these attempts as `still subjective'. 

The most common example of an `objective' technique is the linear regression model. It is next 
to being fully automated: no human intervention is needed beyond preparing reliable, plentiful and 
unbiased data. It has been used for numerous applications, often resulting in utility. It is widely ac-
cepted and known. It is taught in schools. Many people understand linear models and can gain utility 
from them. But this does not make linear regression objective. It is just a specific model, based upon 
many subjective assumptions. The very fact that we are assuming that a linear model can be used to 
represent reality is quite arbitrary. Nobody really believes that the nature is solving linear equations. 

The key difference, thereby, is that ̀ objective' methods result in models that are transplantable, 
multisubjective or intersubjective. Intersubjective models are self-sufficient and encapsulated, they 
are particulars. This way, they can be communicated from one agent to another. Furthermore, trans-
plantable models derive from shared preconceptions; they are guided by rules that are general. They 
do not make use of the hidden implicit subjective assumptions, but only of those prior assumptions 
that are shared by several agents. In summary, intersubjectivity means that a model can be under-
stood and accepted by more than a single agent in a community. But intersubjective approaches are 
still epistemological, so ontologists do not find them objective. 

It is not just that shared language (otherwise a model could not be conveyed), shared data (oth-
erwise the model could not be verified), and shared algorithms (other the model could not be proved) 
that matter: shared utilities matter too. Someone might understand my theory, but the question is 
whether the other agent will appreciate it as much as I do. I might form an intersubjective and com-
prehensible theory of why there are five empty cups of coffee on my desk, but not many agents will 
care: my model of the five cups does not yield them any utility. In all, objective models arise from 
data, algorithms, utilities and languages that are shared by the whole community. Sometimes, we 
convey them explicitly (“Tomorrow is going to rain.”), and sometimes by conveying merely their 
causes (new data, new rules of induction, new words in the language, new qualities and priorities). 
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The four Aristotelian causes (data, algorithms, language, and utility) must be aligned for the 
model to coalesce. Teaching is about varying one or two of the causes so that the learner can re-
adjust his internal model. If too many causes are varied, if there is no alignment, or if there is imbal-
ance along any of the dichotomies listed in the previous sections, the learner becomes confused and 
lost. Therefore, it is desirable for only one of the causes to be varied during teaching. Communicat-
ing the data is the easiest of all causes. It may even turn out that the data is the only way of convey-
ing models: A theory is something nobody believes, except the person who made it. An experiment is 
something everybody believes, except the person who made it. 
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